SNIA 17 SFF

New Project Proposal: SFF-TA-1045

Presented: 8/29/25

Presenter: Jason Stuhlsatz/Josh Sinykin [Broadcom]

[Jason.Stuhlsatz@broadcom.com]

Supporters: Amphenol & Lotes

New Project Proposal: Document Number Needed

- Title: Pin and signal definition for Hybrid Orthogonal EDSFF Connector
- Provide the pin definition, both high speed and low speed, for Hybrid Orthogonal EDSFF Connector – SFF-TA-1044
- Editor: Jason Stuhlsatz/Josh Sinykin
- Supporters:
 - 1. Broadcom
 - 2. Amphenol
 - 3. Lotes

New Project Proposal: Document Number Needed

Known Details

- Hybrid Orthogonal EDSFF Connectors (SFF-TA-1044) provide benefits to traditional backplane designs, but those benefits require additional sideband information to ensure proper installation and access to backplane management.
- Cable Examples include:
 - SFF-TA-1044 to SFF-TA-1016
 - SFF-TA-1044 to SFF-TA-1044
- High speed lanes would directly connect the high-speed lanes in the EDSFF connector to the SFF-TA-1044 plug high speed lanes
- Low speed lanes would consist of both standard sideband pass-thru and local connector-based signals

Contents

- DFC (EDSFF) signal mapping to HFC (cable receptacle)
- Declaration of local based backplane management signals on the HFC side without impacting existing sideband signal definitions
 - Support for Dual Domain
 - Support for Cable Bifurcation or Single Lane access
- After establishment of this standard
 - Mapping would be referenced in a new SFF-9402 device column
 - Aligns with SFF-TA-1005 UBM CCC Process proposal
- IP Declaration (if applicable):
 - Any IP to declare? See SFF-TA-1044
- Timeline: Follows SFF-TA-1044 mechanical connector spec (ETA November 2025)

Reasons for Local Based Backplane Management Signals

- Hybrid Orthogonal EDSFF Connector keeps high speed signals off the backplane, which changes static slot association relationships and moves them to the cable leg installation. A proper installation is necessary for the Backplane Manager to maintain accurate slot to port mapping.
- Signals to SFF-TA-1005 (UBM) to inform it of:
 - The way the cable is divided (i.e., HS subdivisions/bifurcation)
 - The leg # (port #) of the cable connected to each HFC
 - Maximum # of legs in the cable
 - Confirmation of all legs connected to the same host connector

Thank You

SNIA SFF Chair Contact: sff-chair@snia.org

SNIA SFF URL: https://www.snia.org/sff

Examples: 4 drive Backplane

Straight wired Cable Max Leg Count is 4

Examples: 4 drive Backplane

Device Dual Domain

Max Leg Count is 4 for each domain

Examples: 8 drive Backplane

Straight wired Cable Max Leg Count is 4

Examples: 8 drive Backplane - bifurcated

Bifurcated wired Cable
Max Leg Count is 8
Second UBM instance shown in red is optional.

Cable Type Detect: Examples: SFF-TA-1044 for Root & Device **Device Straight** Max Cable Leg Count: 4 Leg X4+Sideband Management Cable Type Detect: Root Straight Leg x4 Device Leg Cable must account for Tx/Rx routing to Leg ensure Root Transmit reaches Device Receive (and vice versa)

