

SFF-TA-1024

Former Specification for

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Rev 1.0 June 5, 2024

SECRETARIAT: SFF TA TWG

ABSTRACT: This specification formerly defined the test procedure and outlines the steps required to perform high speed signal integrity measurements on SFF-TA-1016 style mated cable assemblies.

REASON FOR EXPIRATION: Canceled

This project was canceled as most of the information in this specification was included in the *CopprLink Internal Cable Specification for PCI Express 5.0 and 6.0* published at <u>https://pcisig.com</u>.

POINTS OF CONTACT:

Chairman SFF TA TWG Email: <u>SFF-Chair@snia.org</u>

Paul Coddington Ch. Amphenol High Speed Interconnects 20 Valley Street Endicott, NY 13760 Ph: 607-754-4444 Email: paul.coddington@amphenol-highspeed.com

SFF-TA-1024

Specification for

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Rev 0.0.3 June 23, 2021

SECRETARIAT: SFF TA TWG

This specification is made available for public review at <u>http://www.snia.org/sff/specifications</u>. Comments may be submitted at <u>http://www.snia.org/feedback</u>. Comments received will be considered for inclusion in future revisions of this specification.

The description of the connector in this specification does not assure that the specific component is available from connector suppliers. If such a connector is supplied, it should comply with this specification to achieve interoperability between suppliers.

ABSTRACT: This specification defines the test procedure and outlines the steps required to perform high speed signal integrity measurements on SFF-TA-1016 style mated cable assemblies.

POINTS OF CONTACT:

Paul Coddington Amphenol High Speed Interconnects 20 Valley Street Endicott, NY 13760 Chairman SFF TA TWG Email: <u>SFF-Chair@snia.org</u>

Ph: 607-754-4444 Email: <u>paul.coddington@amphenol-highspeed.com</u>

Intellectual Property

The user's attention is called to the possibility that implementation of this specification may require the use of an invention covered by patent rights. By distribution of this specification, no position is taken with respect to the validity of a claim or claims or of any patent rights in connection therewith.

This specification is considered SNIA Architecture and is covered by the SNIA IP Policy and as a result goes through a request for disclosure when it is published. Additional information can be found at the following locations:

- Results of IP Disclosures: <u>http://www.snia.org/sffdisclosures</u>
- SNIA IP Policy: <u>http://www.snia.org/ippolicy</u>

Copyright

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

- 1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
- 2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing <u>copyright request@snia.org</u>. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA's receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Foreword

The development work on this specification was done by the SNIA SFF TA TWG, an industry group. Since its formation as the SFF Committee in August 1990, the membership has included a mix of companies which are leaders across the industry.

For those who wish to participate in the activities of the SFF TA TWG, the signup for membership can be found at <u>http://www.snia.org/sff/join</u>.

Revision History

- Rev 0.0.1 January 15, 2021:
 - Initial draft

Rev 0.0.2 March 03, 2021:

- Added "Mated Cable Assembly" to the Section 4 heading.
- Removed Section 4.1 through Section 4.4 and renumbered the remaining Section 4 headings accordingly.
- Added "Mated Cable Assembly" to the Section 4.1 heading.
- In Section 5.1.1, fixed typo in Appendix A reference.
- In Section 5.2.5, corrected reference to Appendix C.
- In Section 5.2.8.5, removed erroneous Appendix reference.
- In Section 6.3, edited Equation 6-1 label.
- In Section 6.4, edited Equation 6-2 label, removed Equation 6-3 label, and renumbered all remaining Equations.
- In Section 6.5.1, added hyphen to single-aggressor and edited new Equation 6-3 label.
- In Section 6.5.2, edited new Equation 6-4 label.
- In Section 6.6.1, added hyphen to single-aggressor and edited new Equation 6-5 label.
- In Section 6.6.2, edited new Equation 6-6 label.
- Inserted a new Section 6.7 and renumbered the remaining Section 6 headings accordingly.
- In Section 6.8, edited new Equation labels and updated the formatting of several Equations.
- In Section 6.9, edited new Equation labels, replaced old Figure 6-14 with new Equation 6-15, renumbered the remaining Section 6 Figures, and updated the formatting of several Equations.
- In Section 6.10, edited new Equation labels and updated the formatting of several Equations.
- In Section 7, rotated Table 7-1, Table 7-2, and Table 7-3 in order to enlarge them to increase the text size.
- In Appendix A, rotated Table A-1 3 in order to enlarge the table to increase the text size.
- In Appendix B, Section B.4, added missing steps to Table B-4 and removed all rows after step 43.
- In Appendix B, Section B.5, removed all rows after step 45 in Table B-5.

Rev 0.0.3 June 23, 2021:

- Updated text in Section 1 Scope to add mated connectors test procedures.
- In Section 2.1, added references to SFF-TA-1017 and SFF-TA-1018.
- Inserted a new Section 4 for connector-only compliance test board description and board design.
- Inserted a new Section 5 for connector-only equipment settings, calibration, and verification.
- Inserted a new Section 6 for connector-only electrical measurements and masks and

renumbered the remaining sections, figures, tables, and equations accordingly. Updated Equation 9-9, Equation 9-10, and Equation 9-11. Inserted a new Appendix A and renamed the remaining appendices.

- _

-

Contents

1.	Scope	10
2.	References and Conventions2.1Industry Documents2.2Sources2.3Conventions	10 10 10 11
3.	 Keywords, Acronyms, and Definitions 3.1 Keywords 3.2 Acronyms and Abbreviations 3.3 Definitions 	12 12 13 14
4.	 General Connector-only Compliance Test Board Description 4.1 Connector-only Compliance Board Design 4.2 Connector-only Test Board Stack-up 4.3 Vertical and Right Angle Test Card Connector Footprints 4.4 Connector-only Tested Pairs 4.5 Vertical and Right Angle Module Compliance Board (MCB) 4.6 Vertical and Right Angle Host Compliance Board (HCB) 4.7 Vertical and Right Angle Mated Test Set-up 	17 17 17 18 18 18 18
5.	Connector-only Equipment Settings, Calibration, & Verification5.1AFR Calibration for Connector-only Tests5.2AFR Measurement Flow for Connector-only Tests5.3VNA Settings for Connector-only Measurements5.4End of Cable SOLT Calibration5.5Determine Stop Frequency5.6Connector-only Procedure5.7Connector-only Calibration Verification5.8Connector-only TDR Option	18 18 19 19 19 19 19 20 20
6.	 Connector-only Electrical Measurements and Masks 6.1 VNA Port Naming Convention for Connector-only Tests 6.2 Differential Insertion Loss and Return Loss (DDIL\DDRL) for Connector-only Tests 6.3 Connector-only Crosstalk Measurements 6.3.1 Connector-only Power Sum Near-End Cross Talk (PSNEXT) 6.3.2 Connector-only Power Sum Far End Cross Talk (PSFEXT) 	20 20 20 20 20 20 20
7.	General Mated Cable Assembly Compliance Test Board Description7.1Mated Cable Assembly Compliance Board Design7.2Calibration Standards7.3Reference Plane Positions7.4Board Stack-up7.5Fixed Connector Footprint7.6Mated Cable Assembly Test Set-up	20 20 22 23 25 26 27
8.	Equipment Settings, Calibration, & Verification for Cable Assemblies 8.1 Overview 8.1.1 Device Under Test (DUT) 8.1.2 Time and Frequency Domain Measure Test Flow 8.2 VNA Equipment Settings 8.2.1 Electronic Calibration (E-Cal) 8.2.2 Manual Calibration	27 28 28 28 29 29 30

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Page 6

 8.2.3 Stop Frequency, F(max) 8.2.4 Reference Plane Definition 8.2.5 Time Domain Reflectometry Tuning 8.2.6 Fixture Intra-pair Skew 8.2.7 Flight Time 8.2.8 Calibration Verification 8.2.8.1 Secondary Line Phase Margin 8.2.8.2 Calibration Stability 8.2.8.3 Dynamic Range 8.2.8.4 Check System Reference Impedance 8.2.8.5 TRL Four Port Calibration 	30 31 32 33 33 33 33 33 34 34
 9. Cable Assembly Frequency Domain Measurement 9.1 Port Naming Convention 9.2 Fixed Connector Termination During Measurement 9.3 Differential Insertion Loss (SDD21) 9.4 Differential Return Loss (SDD11 and SDD22) 9.5 Crosstalk Measurement 9.5.1 Single-aggressor Near-end Crosstalk (DDNEXT) 9.5.2 Multi-Disturber Near-end Crosstalk (MDNEXT) 9.6 Far End Crosstalk 9.6.1 Single-aggressor Far-End Crosstalk (DDFEXT) 9.6.2 Multi-Disturber Far-End Crosstalk (MDFEXT) 9.6.2 Multi-Disturber Far-End Crosstalk (MDFEXT) 9.7 MDFEXT Without Fixture FEXT (MDFEXTwoff) 9.8 Effective Intra-Pair Skew (EIPS) 9.9 Effective Pair-to-Pair Skew (EIPS) 9.10 Mated Cable Assembly Skew Measurement 9.11.1 Rise Time 9.11.2 Instantaneous Impedance 9.11.3 Average Impedance 	35 36 36 37 39 39 39 41 41 41 43 45 46 46 46 47 47
 Cable Assembly Test Plans 10.1 Vertical Receptacle to Vertical Receptacle, MCA Measurement, Rx to Tx Cable 10.2 Vertical Receptacle to RA Receptacle, MCA Measurement, Rx to Tx Cable 10.3 RA Receptacle to RA Receptacle, MCA Measurement, Rx to Tx Cable 	48 48 50 51
 Appendix A System Mechanical Specification for Connector-only Testing A.1 VNA AFR Measurement Templates A.2 Vertical Connector Mechanical Fixture A.3 Vertical Connector Test Board Bill of Materials A.4 Right Angle Connector Mechanical Fixture A.5 Right Angle Connector Test Board Bill of Materials 	52 52 52 52 52 52 52
Appendix B Cyllene Bill of Materials For Cable Assembly Testing	53
 Appendix C VNA TRL Calibration C.1 TRL Calibration Crossover Frequencies C.2 TRL Calibration E-cal and Fixture Bandwidth C.3 Initial TRL Calibration Steps 1 - 22 C.4 Final TRL Calibration Steps Using 2 Defined Throughs + 2 Unknown Throughs C.5 Final TRL Calibration Steps Using 2 Defined Throughs + 4 Unknown Throughs 	54 54 55 56 57
Appendix D Rise Time Measurement D.1 TDR Head Connections	58 58

Test Procedure for SFF-TA-1016 Mated Cable Assembly

D.2	TDR Instrument Default Settings.	58
D.3	IDR Mode Setup.	59
D.4	Channel Definition	59
D.5	View the Rising Edge	60
D.6	Rise Time Measurement Setup.	60
D.7	Rise Time Adjustments.	63
D.7	.1 Rise Time Adjustment Option 1	63
D.7	.2 Rise Time Adjustment Option 2.	63
Figures		
Figure 3-1	Plug and Receptacle Definition	15
Figure 3-2	Right Angle Connector and Cable Assembly	15
Figure 3-3	Wipe for a Continuous Contact	16
Figure 7-1	Mated Cable Assembly Evaluation Board Set: Cyllene RAR, Cyllene VR	21
Figure 7-2	Mated Cable Assembly Evaluation TRL Calibration Traces	22
Figure 7-3	Mated Cable Assembly Evaluation Board Reference Plane Location: RAR	23
Figure 7-4	Mated Cable Assembly Evaluation Board Reference Plane Location: VR	24
Figure 7-5	Mated Cable Assembly Reference Plane Location in Crosstalk Spider	25
Figure 7-6	The 8-Layer Stack-up for Cyllene RAR & Cyllene VR Test Boards	26
Figure 7-7	Mated Cable Assembly Evaluation Board Footprint Dimensions: RAR, VR	26
Figure 7-8	Mated Cable Assembly Evaluation Board Stack-up: RAR, VR	27
Figure 7-9	Recommended Mated Cable Assembly Configurations	27
Figure 8-1	Mated Cable Assembly Evaluation Device Under Test, VR-RAR Fixed Connectors	28
Figure 8-2	Time and Frequency Domain Measurement Test Flow	29
Figure 8-3	Example of Allen Test results to characterize the stop frequency, Fmax	30
Figure 8-4	Open Circuit Configuration	31
Figure 8-5	RL Measurement from Test Fixtures	32
Figure 8-6	TDR Obtained via FD to TD Conversion of RL of a Differential Pair	32
Figure 9-1	VNA Port Naming Convention Example	35
Figure 9-2	Mated Cable Assembly Evaluation Board Pin Termination: RAR, VR	36
Figure 9-3	Vertical MCIO to Vertical MCIO, Insertion Loss/Return Loss, 1x to Rx Cable	3/
Figure 9-4	Vertical MCIO to RA MCIO Ix to Rx Cable	38
Figure 9-5	Right Angle MCIO to Right Angle MCIO, Insertion Loss/Return Loss, Tx to Rx Cable	38
Figure 9-6	Vertical Receptacie, NEXT RX Victim	40
Figure 9-7	Right Angle Receptacle, NEXT RX Victim, TX to RX Cable	40
Figure 9-8	Vertical to Vertical, FEXT RX Victim, TX to RX Cable	41
Figure 9-9	Vertical to Right Angle, FEXT RX Victim, TX to RX Cable	42
Figure 9-10	J Vertical to Right Angle, FEXT RX Victim, TX to RX Cable	42
Figure 9-1.	I Moullieu Mixed-Mode Insertion Loss, 5201 and 5401	43
Figure 9-12	2 Intra-Pair Skew Introduction to a 4-Port System	44 45
Figure 9-13	A Skow Manusement Test Set	45
Figure 9-14	F Skew Medsurement Test Set	40
Figure 9-1:	A vorage Impedance Example	47
Figure D 1	TDR Head Connections	40 E0
Figure D-1	TDR Instrument Default Settings Screenshot	20
Figure D-2	TDR Instrument Delduit Settings Screenshot	50
Figure D-3	Channel Definition Setup	29
Figure D-4	TDD View of Dicing Edge	29
Figure D-5	Screenshot for Satur Stars 2 and h	00 60
Figure D-0	Screenshot for Setup Steps a. and c	60 61
Figure D-7	Screenshot for Setup Steps D. and C.	61
Figure D-0	Screenshot for Setup Steps a. and c.	67
i igui e D-9	Second to Secup Step 1.	02

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Page 8

Figure D-10	Screenshot for Setup Steps g. and h.	62
Figure D-11	Screenshot for Option 2 Steps a. and b. and c.	63
Figure D-12	Screenshot Showing Measured Rise Time	64

Tables

Table 4-1 Total Coupon Sizes	1/
Table 8-1 VNA Equipment Settings	29
Table 8-2 CYLLENE Mated Cable Evaluation Board TRL Calibration Launch Position vs TRL Line	33
Table 10-1 VR to VR Test Plan	49
Table 10-2 VR to RA Test Plan	50
Table 10-3 RA to RA Test Plan	51
Table B-1 Cyllene Bill of Materials	53
Table C-1 TRL Calibration Kit Crossover Frequencies	54
Table C-2 E-cal and Fixture Bandwidth Checks	54
Table C-3 Initial TRL Calibration Steps	55
Table C-4 TRL Calibration Steps 23 to 43 Using 2 Defined Throughs + 2 Unknown Throughs	56
Table C-5 Final TRL Calibration Steps Using 2 Defined Throughs + 4 Unknown Throughs	57

1. Scope

This specification defines the test procedure and outlines the steps required to perform high speed signal integrity measurements on SFF-TA-1016 style mated connectors and separate test procedures and steps required for mated cable assemblies.

2. References and Conventions

2.1 Industry Documents

The following documents are relevant to this specification:

- ASME Y14.5 Dimensioning and Tolerancing
- EIA-364-1000 Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets Used in Controlled Environment Applications
- REF-TA-1011 Cross Reference to Select SFF Connectors
- SFF-TA-1017 Test Board Specification for SFF-TA-1002 Straight Connector
- SFF-TA-1018 Test Board Specification for SFF-TA-1002 Right Angle Connector

2.2 Sources

The complete list of SFF documents which have been published, are currently being worked on, or that have been expired by the SFF Committee can be found at <u>http://www.snia.org/sff/specifications</u>. Suggestions for improvement of this specification will be welcome, they should be submitted to <u>http://www.snia.org/feedback</u>.

EDITOR'S NOTE: Delete sources not cited in Section 2.1; e.g. PCIe, SAS, etc. (or add in any missing references)

Copies of PCIe standards may be obtained from PCI-SIG (<u>http://pcisig.com</u>).

Copies of InfiniBand standards may be obtained from the InfiniBand Trade Association (IBTA) (<u>http://www.infinibandta.org</u>).

Copies of IEEE standards may be obtained from the Institute of Electrical and Electronics Engineers (IEEE) (<u>https://www.ieee.org</u>).

Copies of SAS and other ANSI standards may be obtained from the International Committee for Information Technology Standards (INCITS) (<u>http://www.incits.org</u>).

Copies of JEDEC standards may be obtained from the Joint Electron Device Engineering Council (<u>https://www.jedec.org</u>).

Copies of OIF Implementation Agreements may be obtained from the Optical Internetworking Forum (<u>http://www.oiforum.com</u>).

Copies of ASME standards may be obtained from the American Society of Mechanical Engineers (<u>https://www.asme.org</u>).

Copies of Electronic Industries Alliance (EIA) standards may be obtained from the Electronic Components Industry Association (ECIA) (<u>https://www.ecianow.org</u>).

2.3 Conventions

The following conventions are used throughout this document:

DEFINITIONS

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

LISTS

Lists sequenced by lowercase or uppercase letters show no ordering relationship between the listed items.

EXAMPLE 1 - The following list shows no relationship between the named items:

- a. red (i.e., one of the following colors):
 - A. crimson; or
 - B. pink;
- b. blue; or
- c. green.

Lists sequenced by numbers show an ordering relationship between the listed items.

EXAMPLE 2 -The following list shows an ordered relationship between the named items:

- 1. top;
- 2. middle; and
- 3. bottom.

Lists are associated with an introductory paragraph or phrase, and are numbered relative to that paragraph or phrase (i.e., all lists begin with an a. or 1. entry).

DIMENSIONING CONVENTIONS

The dimensioning conventions are described in ASME-Y14.5, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

NUMBERING CONVENTIONS

The ISO convention of numbering is used (i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point). This is equivalent to the English/American convention of a comma and a period.

French	ISO
0,6	0.6
1 000	1 000
1 323 462,9	1 323 462.9
	French 0,6 1 000 1 323 462,9

3. Keywords, Acronyms, and Definitions

For the purposes of this document, the following keywords, acronyms, and definitions apply. EDITOR'S NOTES:

- Add any abbreviations or definitions specific to the connector being defined. Keywords may not be added.
- Remove keywords, acronyms, or definitions that are not relevant to this specification

3.1 Keywords

May/ may not: Indicates flexibility of choice with no implied preference.

Obsolete: Indicates that an item was defined in prior specifications but has been removed from this specification.

Optional: Describes features which are not required by the SFF specification. However, if any feature defined by the SFF specification is implemented, it shall be done in the same way as defined by the specification. Describing a feature as optional in the text is done to assist the reader.

Prohibited: Describes a feature, function, or coded value that is defined in a referenced specification to which this SFF specification makes a reference, where the use of said feature, function, or coded value is not allowed for implementations of this specification.

Reserved: Defines the signal on a connector contact [when] its actual function is set aside for future standardization. It is not available for vendor specific use. Where this term is used for bits, bytes, fields, and code values; the bits, bytes, fields, and code values are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

Restricted: Refers to features, bits, bytes, words, and fields that are set aside for other standardization purposes. If the context of the specification applies the restricted designation, then the restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word, or field (e.g., a restricted byte uses the same value as defined for a reserved byte).

Shall: Indicates a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: Indicates flexibility of choice with a strongly preferred alternative.

Vendor specific: Indicates something (e.g., a bit, field, code value) that is not defined by this specification. Specification of the referenced item is determined by the manufacturer and may be used differently in various implementations.

3.2 Acronyms and Abbreviations

AWG: American Wire Gauge **dB:** decibel, given in dB-volt i.e., 20log10(V2/V1) **DUT**: Device Under Test **E-Cal**: Electronic calibration **EMLB:** Early Mate Late Break EIPS: Effective Intra-pair Skew **EPPS:** Effective Pair-to-Pair Skew **ESD**: Electrostatic Discharge Fmax: stop frequency, maximum operating frequency, and frequency at which insertion loss - return loss of the fixture 5 dB **IDC:** Insulation Displacement Contact **IDT:** Insulation Displacement Termination **Gbps**: Gigabits per second GT/s: Giga-Transfers per second **HVLP**: Hyper Very Low Profile HVSP: Hyper Very Smooth Profile LLCR: Low Level Contact Resistance MCA: Mated Cable Assembly PCB: Printed Circuit Board **PF:** Press Fit **PSFEXT:** Power Sum Far End Crosstalk PSNEXT: Power Sum Near End Crosstalk **PTH:** Plated Through Hole **RA:** Right Angle **RAR**: Right Angle Receptacle **RAND:** Reasonable and Non-Discriminatory RL: Return Loss **SDD11**: Input Differential Return Loss **SDD12**: Output Differential Return Loss **SDD21**: Input Differential Insertion Loss **SDD22**: Output Differential Return Loss SMA: Sub-Miniature version A **SMT:** Surface Mount Technology SOLT: Short, Open, Load, Thru **TDR**: Time Domain Reflectometry **TDT**: Time Domain Through **TEM:** Transverse Electro-Magnetic TRL: Through, Reflect, Line VNA: Vector Network Analyzer VR: Vertical Receptacle VLC: Vertical Launch Connector VSP: Very Smooth Profile

3.3 Definitions

Allen Test: Insertion loss and return loss measurement of the primary thru, measurement made after SOLT/E-calibration and prior to TRL/2x Thru calibration to determine the maximum operational frequency of the VNA and fixture equipment set.

Alignment guides: A term used to describe features that pre-align the two halves of a connector interface before electrical contact is established. Other common terms include: guide pins, guide posts, blind mating features, mating features, alignment features, and mating guides.

Basic (dimension): The theoretical exact size, profile, orientation, or location of a feature. It is used as the basis from which permissible variations are established by tolerances in notes or in feature control frames (GD&T).

Cable Assembly: the combination of wire and free connectors

Connector: Each half of an interface that, when joined together, establish electrical contact and mechanical retention between two components. In this specification, the term connector does not apply to any specific gender; it is used to describe the receptacle, the plug or the card edge, or the union of receptacle to plug or card edge. Other common terms include: connector interface, mating interface, and separable interface.

Contact mating sequence: A term used to describe the order of electrical contact established/ terminated during mating/un-mating. Other terms include: contact sequencing, contact positioning, mate first/break last, EMLB (early mate late break) staggered contacts, and long pin/short pin.

Contacts: A term used to describe connector terminals that make electrical connections across a separable interface.

Datum: A point, line, plane, etc. assumed to be exact for the purposes of computation or reference, as established from actual features, and from which the location or geometric relationship of either feature is established.

Device Under Test (DUT): The components within the measurement reference planes.

Free Connector: a connector, typically a plug, permanently attached to wire, creating a cable assembly.

Fixed Connector: a connector, typically a receptacle, permanently attached to the printed circuit board.

Frontshell / Backshell: A term used to describe the metallic part of a module that provides mechanical and shielding continuity between the plug and receptacle. Other terms commonly used are: housing, snout, and metal shroud.

Mated Cable Assembly (MCA): refers to the combination of copper wire, plugs, receptacles and receptacle footprint that comprise the device under test in this specification.

Module: In this specification, module may refer to a plug assembly at the end of a copper (electrical) cable (passive or active), an active optical cable (AOC), an optical transceiver, or a loopback.

Plug: A term used to describe the connector that contains the penetrating contacts of the connector interface as shown in Figure 3-1. Plugs typically contain stationary contacts. Other common terms include male, pin connector, and card edge.

Receptacle

Plug

Figure 3-1 Plug and Receptacle Definition

Plated through hole termination: A term used to describe a termination style in which rigid pins extend into or through the PCB. Pins are soldered to keep the connector or cage in place. Other common terms are through hole or PTH.

Press fit: A term used to describe a termination style in which collapsible pins penetrate the surface of a PCB. Upon insertion, the pins collapse to fit inside the PCB's plated through holes. The connector or cage is held in place by the interference fit between the collapsed pins and the PCB.

Receptacle: A term used to describe the connector that contains the contacts that accept the plug contacts as shown in Figure 3-1. Receptacles typically contain spring contacts. Other common terms include female and socket connector.

Reference (dimension): A dimension provided for information or convenience. It has no tolerance and is not to be used for inspection or conformance. It can be calculated from other tolerance dimensions or can be found elsewhere on the drawing with a tolerance. If removed, it would have no impact on the defined object or the ability or reproduce it.

Reference Plane: the location within the measurement fixture where user calibration is performed and where the measurement is made.

Right Angle: A term used to describe either a connector design where the mating direction is parallel to the plane of the printed circuit board upon which the connector is mounted or a cable assembly design where the mating direction is perpendicular to the bulk cable.

Figure 3-2 Right Angle Connector and Cable Assembly

Straddle mount: A term used to describe a termination style that uses surface mount termination points

Test Procedure for SFF-TA-1016 Mated Cable Assembly

on both sides of a PCB.

Straight: A term used to describe a connector design where the mating direction is parallel to the bulk cable.

Surface mount: A term used to describe a termination style in which solder tails sit on pads on the surface of a PCB and are then soldered to keep the connector or cage in place. Other common terms are surface mount technology or SMT.

Termination: A term used to describe a connector's non-separable attachment point such as a connector contact to a bulk cable/ a cage to a PCB or flex circuit/ bulk cable to a PCB or flex circuit/ solder tail to PCB. Common PCB terminations include: surface mount (SMT), plated through hole termination (PTH), and press fit (PF). Common cable terminations include insulation displacement contact (IDC), insulation displacement termination (IDT), wire slots, solder, welds, crimps, and brazes.

Vertical: A term used to describe a connector design where the mating direction is perpendicular to the printed circuit board upon which the connector is mounted.

Wipe: The distance a contact travels on the surface of its mating contact during the mating cycle as shown in Figure 3-3.

Figure 3-3 Wipe for a Continuous Contact

4. General Connector-only Compliance Test Board Description

The connector-only compliance test board is intended to test the performance of the connector and footprint only. The set-up tests worst-case coupling and other electrical parameters using six differential pairs.

4.1 Connector-only Compliance Board Design

The connector-only test board design shall be such that both the Module Compliance Board (MCB) and Host Compliance Board (HCB) come from the same fabrication panel. The impedance of the copper traces shall be 85 Ohm differential (42.5 Ohm single-ended). Signal launch-off connectors on the test board shall have at a minimum a 40 GHz bandwidth. The coupon accommodations shall be sufficient to accommodate an AFR calibration as well as a spider approach of removing fixture cross-talk. The total coupon size shall be as specified in Table 4-1 and illustrated in Figure 4-1 and Figure 4-?.

Table 4-1 Total Coupon Sizes

Insert Vertical Figure here

Insert Vertical Top View Figure here

Insert Vertical Bottom View Figure here

Insert Right Angle Figure here

Insert Right Angle Top View Figure here

Insert Right Angle Bottom View Figure here

4.2 Connector-only Test Board Stack-up

Both the MCB and HCB shall have the same stack-up. The test board stack-up shall consist of 8 layers. The board material shall be Nelco 4000-13SI. The signal trace width is 7.5 mils (0.1905 mm) using $\frac{1}{2}$ ounce copper weight. The board stack-up as illustrated in Figure 4-#.

Developer's Note: The supporting Gerber package includes trace width and impedance details. Should there be any contradiction between the trace width and meeting the impedance requirements as indicated on the Fab drawing for a PCB manufacturer, the impedance requirement shall take precedence.

Insert Figure here

4.3 Vertical and Right Angle Test Card Connector Footprints

The connector footprints shall be as specified in Appendix A of SFF-TA-1016. The signals use 6 mil (0.1524 mm) microvias from the top layer's SMT pads to the second layer. As illustrated in Figure 4-#, microvias are used to move the stripline signals to the top layer with limited signal degradation. The connector footprints contain a bus on the ground layer to bus the grounds together. This structure

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Page 17 Copyright © 2024 SNIA. All rights reserved. mitigates crosstalk that can happen when transitioning from the stripline layer to the outer layers.

Insert Figure here

4.4 Connector-only Tested Pairs

The test board tests six high-speed pairs using three pairs within row A and three pairs within row B directly across from each other as illustrated in Figure 4-# & Figure 4-#.

Insert Figure here

Insert Figure here

4.5 Vertical and Right Angle Module Compliance Board (MCB)

Enter details about the MCBs here.

Insert Figure here

Insert Figure here

4.6 Vertical and Right Angle Host Compliance Board (HCB)

Enter details about the HCBs here.

Insert Figure here

Insert Figure here

4.7 Vertical and Right Angle Mated Test Set-up

To ensure proper and stable mating during the test of this board the HCB and MCB shall be secured into position once mated as illustrated in Figure 4-# & Figure 4-#.

Insert Figure here

Insert Figure here

When mating the HCB into the connector on the MCB the leading edge shall be fully inserted such that the card bottoms out inside the connector slot on the seating plane. Testing shall be performed at a fully-mated condition where there is a nominal 1.30 mm wipe length on the signal pads and 1.70 mm wipe length on the ground pads. This may require an additional mechanical structure to provide stability and to prevent cables from disturbing the mated interface during measurement. See Appendix **#** for additional details.

5. Connector-only Equipment Settings, Calibration, & Verification

This section details the equipment settings, the calibration method, and the verifications required for connector-only testing. For the equipment settings, the calibration method, and the verification required for cable assemblies, refer to Section 8.

5.1 AFR Calibration for Connector-only Tests

The test fixture is designed for automatic fixture removal (AFR) calibration with 2x thru traces. The 2x thru

Test Procedure for SFF-TA-1016 Mated Cable Assembly

trace is on the connector-only test MCB. After de-embedding the 2x Thru, the reference plane shall be set immediately before the anti-pad to ensure clean calibration.

Developer's Note: This specification references AFR throughout, but it is acceptable to use an AFR equivalent.

Developer's Note: This fixture includes the microvias and microstrip length of 45mils in the electrical characterization.

The traces are short to provide higher metrology grade bandwidth to the test fixture. After the traces are de-embedded with AFR, the resulting device under test (DUT) shall contain a 0.5mm trace before the footprint as illustrated in Figure 5-#.

Insert Figure here

5.2 AFR Measurement Flow for Connector-only Tests

The flowchart below in Figure 5-# provides the steps needed for repeatable and accurate measurements.

Insert Figure here

5.3 VNA Settings for Connector-only Measurements

The vector network analyzer (VNA) should be set to the settings provided in Table 5-# below.

Setting	Value
Averaging	
Step Size	
IF Bandwidth	
Start Frequency	
Stop Frequency	

The VNA system impedance should be set to 50 Ohms.

5.4 End of Cable SOLT Calibration

A standard end of cable SOLT calibration needs to be performed in order to move the reference plane to the end of the test point cables. The SOLT calibration may be done with an eCAL or manually with the standards kit that comes with the VNA.

5.5 Determine Stop Frequency

The Stop Frequency is determined by measuring the 2x Thru after the SOLT Calibration. The resultant IL and RL should be plotted on the same graph to determine the Stop Frequency. The Stop Frequency is determined by the frequency where the IL is not greater than the RL by 5dB. The Stop Frequency depends on board quality. An example of the stop frequency that is good up to 40GHz.

Insert Figure here

5.6 Connector-only Procedure

After the reference plane is moved to the end of the cable, the 2x Thrus may be measured to continue moving the reference plane to immediately before the DUT. There are three 2x Thrus measurements that need to be completed for the proper calibration. The MCB_2x Thru, HCB Layer2_2x Thru, and HCB

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Layer7_2xThru need to be measured. Half fixtures are derived from these three 2x Thru measurements and are used to de-embed their respective boards.

- The 2x Thru on the MCB is used to de-embed all pairs both A and B on the MCB board
- The 2x Thru on the HCB Layer 2 is used to de-embed all the A pairs (A17/A18, A20/A21, A23/A24)
- The 2x Thru on the HCB Layer 7 is used to de-embed all the B pairs (B17/B18, B20/B21, B23/B24)

5.7 Connector-only Calibration Verification

The verification of the half fixture should be done by de-embedding the 2x Thru from which the half fixture was created.

5.8 Connector-only TDR Option

A time domain reflectometry (TDR) using a 1x Thru trace to calibrate rise time of the incoming signal at the connector. A TDR may be used to verify any questionable frequency domain-to-time domain transformations due to causality and passivity issues during testing.

Insert Figure here

6. Connector-only Electrical Measurements and Masks

- 6.1 VNA Port Naming Convention for Connector-only Tests
- 6.2 Differential Insertion Loss and Return Loss (DDIL\DDRL) for Connectoronly Tests
- 6.3 Connector-only Crosstalk Measurements
- 6.3.1 Connector-only Power Sum Near-End Cross Talk (PSNEXT)
- 6.3.2 Connector-only Power Sum Far End Cross Talk (PSFEXT)

7. General Mated Cable Assembly Compliance Test Board Description

7.1 Mated Cable Assembly Compliance Board Design

Test boards are designed to support TRL calibration and 2x thru methods with launch to reference plane lengths equal within $\pm 0.0005''$ enabling accurate high-speed measurements of the mated cable assembly. Crosstalk spider patterns are used to estimate fixture crosstalk to aid in accurate characterization of cable assembly crosstalk. All boards are designed to achieve $42.5 \pm 5\%$ impedance control. Board stacks, materials, line lengths and calibration structures are designed to allow mated cable assembly characterization.

Figure 7-1 Mated Cable Assembly Evaluation Board Set: Cyllene RAR, Cyllene VR

7.2 Calibration Standards

TRL calibration standards, one primary through, one short (reflect), three lines (called Secondary 1, 2, and 3) and one load are used as depicted in Figure 7-2. The frequency range for each secondary is written on the silkscreen. Secondary line delay labels are for reference only, use measured secondary delays for calibration. 2X through calibration is enabled using the primary though (2X through).

Figure 7-2 Mated Cable Assembly Evaluation TRL Calibration Traces

7.3 Reference Plane Positions

The primary through is designed to position the reference plane 0.050" from the trace/anti-pad transition on the test board.

Figure 7-3 Mated Cable Assembly Evaluation Board Reference Plane Location: RAR

Figure 7-4 Mated Cable Assembly Evaluation Board Reference Plane Location: VR

The fixture FEXT removal structure is based on the four traces with highest potential for fixture crosstalk in the vertical receptacle board.

Figure 7-5 Mated Cable Assembly Reference Plane Location in Crosstalk Spider

7.4 Board Stack-up

The VNA setup and test plan used in this procedure are designed to produce S-parameter measurements referenced to a 42.5 ohm single-ended impedance. All test traces are held to a characteristic impedance of 42.5 ohms +/- 5%. The test board is an eight layer stack-up. MEGTRON 6 or TU-883 are used for the laminate material on all layers. The stack-up details for the boards are shown in Figure 7-6.

Figure 7-6 The 8-Layer Stack-up for Cyllene RAR & Cyllene VR Test Boards

7.5 Fixed Connector Footprint

Fixed connector surface pad, anti-pad, ground via size, and position have a significant impact on mated cable assembly performance. The following figures illustrate optimal fixed connector footprints for vertical and right angle receptacles.

Figure 7-7 Mated Cable Assembly Evaluation Board Footprint Dimensions: RAR, VR

Figure 7-8 Mated Cable Assembly Evaluation Board Stack-up: RAR, VR

7.6 Mated Cable Assembly Test Set-up

The test boards should be attached to a rigid structure to ensure proper and stable mated cable assembly configuration during test. Recommended mated cable assembly configurations are shown in Figure 7-9.

Figure 7-9 Recommended Mated Cable Assembly Configurations

8. Equipment Settings, Calibration, & Verification for Cable

Assemblies

8.1 Overview

8.1.1 Device Under Test (DUT)

Figure 8-1 illustrates the test setup for the VNA measurement, location of the measurement reference planes, and mated cable assembly DUT descriptions.

The vector network analyzer setup used in this test procedure performs single-ended S-parameter measurements that are used to calculate differential response in an 85 ohm characteristic impedance environment.

Test traces on the board are maintained to 42.5 \pm 2.25 ohms (\pm 5%). Test boards are designed with trace length (L) from the launch connector to the reference plane to within \pm 0.0005. The bill of materials is listed in Appendix A.

Figure 8-1 Mated Cable Assembly Evaluation Device Under Test, VR-RAR Fixed Connectors

8.1.2 Time and Frequency Domain Measure Test Flow

The test flow in the following figure describes the key steps and responses needed to complete accurate and repeatable time and frequency domain measurements. Key steps such as calibration, rise time verification, de-skew and Cal check should be performed daily, both before and after completing the measurement test plan to ensure stability of the test environment for the duration of the measurement

Test Procedure for SFF-TA-1016 Mated Cable Assembly

activity.

Figure 8-2 Time and Frequency Domain Measurement Test Flow

8.2 VNA Equipment Settings

S-parameter measurements are made using a Vector Network Analyzer (VNA). VNA settings affect the measurement and calibration performance. To improve measurement accuracy and repeatability, use the baseline settings indicated in the following table when running a calibration procedure.

Frequency Range	0.01 GHz: 0.01 GHz: 40 GHz
IF Bandwidth	≤ 1 kHz
Number of averages	Averaging is not recommended
Smoothing	Off

Table 8-1 VNA Equipment Settings

CAUTION: WHEN ATTACHING THE SMA FEMALE/MALE CONNECTORS BETWEEN THE FIXTURE AND THE VNA INSTRUMENT MAKE SURE TO ROTATE THE EXTERNAL BOLT OF THE CONNECTOR AVOIDING THE ROTATION OF THE CABLES/FIXTURE/CALIBRATION DEVICES TO AVOID THE DAMAGE OF THE CENTRAL PIN. MAKE SURE TO TIGHTEN THE CONNECTIONS TO 8 IN-LBS USING A TORQUE WRENCH.

8.2.1 Electronic Calibration (E-Cal)

To carry out the calibration of the equipment using the E-Cal device, the number of points, IF bandwidth, and the start and stop frequencies must be set. With the proper setting of the VNA instrument, go to the calibration menu and choose the option E-Cal, then chose the proper E-Cal device and run the calibration making the proper connections as indicated by the wizard. Once the calibration is finished save the setup.

8.2.2 Manual Calibration

The manual calibration is performed using the calibration kit provided by the manufacturer of the VNA instrument. The calibration routine must be carried out setting the appropriate number of points and ensuring that the start/stop calibration frequencies enclose the stop frequency of the Allen Test.

WARNING: VERIFY THE PROPER MATCHING OF THE CONNECTOR CABLES AND THE CONNECTIONS OF THE MANUAL CALIBRATION DEVICES TO AVOID MECHANICAL DAMAGE.

Under normal conditions the following calibrations are required:

- Reflective Calibration: This calibration includes three different measurements using the devices provided in the calibration kit.
 - a. Short Circuit Calibration
 - b. Open Circuit Calibration
 - c. Broadband load calibration (usually a 50 Ω load)
- Through Calibration: The through calibration is carried out connecting the ports to be calibrated with the cables in short circuit. It is important to take into consideration the extra delay introduced by the through device when the through calibration is carried out.
- Isolation calibration: The isolation calibration is usually omitted.

8.2.3 Stop Frequency, F(max)

The Stop Frequency Test is a useful test procedure to determine the maximum operating frequency (Fmax) of the test set-up including test fixture and VNA. Over the frequency range up to Fmax, the RF components and the VNA should not resonate. The Allen Test is performed using the primary through. There should be at least 5 dB margin between Insertion Loss (IL) and Return Loss (RL) at the highest measured frequency. The following steps are recommended for the Allen Test.

- 1. Perform SOLT calibration to set the reference plane at the VNA cable ends.
- 2. Measure primary through on the baseboard
- 3. Assess IL for significant high Q deviations.
- 4. Assess frequency of 5 dB difference between insertion loss and return loss.

Figure 8-3 Example of Allen Test results to characterize the stop frequency, Fmax

8.2.4 Reference Plane Definition

The VNA must be calibrated to a known standard to characterize the performance of the connector in the test fixture. The intent of the calibration is to eliminate systematic errors in the measurement and improve measurement accuracy.

The precise geometric location at which a vector network analyzer measurement is made is called the reference plane. There are sometimes two different reference planes involved in a connector measurement. If a commercial coaxial calibration kit is used, it will typically establish a reference plane near the end of the test cables. In this case, a secondary calibration is needed to remove the influence of the test fixture and move the reference plane closer to the DUT.

One key property of the reference plane is it is far enough from geometric transitions such as vias that ephemeral modes die out before reaching the reference plane. The footprint is measured as part of the DUT. The recommended reference plane VNA Settings (see Table 8-1) for Measuring Intel UPI 2.0 Cable Assembly position is 50 mils from any geometric transition, e.g., signal trace to connector/via/anti-pad, signal trace to baseboard pad/anti-pad or signal trace to edge finger/anti-pad.

8.2.5 Time Domain Reflectometry Tuning

Impedance measurements are obtained using TDR measurements. Two critical requirements must be tuned before carrying out a TDR measurement:

De-skewing cables ensure the arrival of the TDR pulse at the end of the cables within appropriate delay, minimizing common mode effects in the measurement.

1. Connect the cables to the channels of the TDR instrument and leave them in an open circuit configuration, $\rho = 1$.

Figure 8-4 Open Circuit Configuration

- 2. Carry on the settings that were used to get the rise time of 15 psec at the reference plane of the half primary through.
- 3. Under Setup> TDR configure the individual channels to form the differential channel.

For example, if using C1 and C2 as a differential channel, then set C1 as a rising edge and C2 as a falling edge.

- a. Turn ON the TDR step and acquisition for both the channels.
- b. Change the units of both the channels to rho (p).

Rise time verification: The equipment must have an approximate rise time of the TDT step. TDR modules must enable a 15 ps rise time (20-80%) at the reference plane. To measure the differential impedance, two channels used as excitation (TDR pulse) must be de-skewed (in differential mode). See Appendix D.

8.2.6 Fixture Intra-pair Skew

DUT (Device Under Test) skew is obtained using VNA measurement data. In order to capture the inter-pair skew properly, the following procedures are recommended to estimate fixture skew.

- 1. Perform SOLT calibration at the VNA cable ends.
- 2. Measure RL on test boards as shown in the following figure. Note that DUT is not assembled, and the board is open at the pads where DUT is to be placed.
- 3. Convert RL of a differential pair in FD (frequency-domain) into TDR in TD (time-domain) to obtain the TDR, use a step voltage for the stimulus with the rise time (20-80%) defined for impedance testing.

Figure 8-5 RL Measurement from Test Fixtures

4. Measure the fixture skew of fixtures using TDR, DF = [(TP-TN)/2].

Figure 8-6 TDR Obtained via FD to TD Conversion of RL of a Differential Pair

- 5. Calculate fixture skew by adding average 'Fixture A' skew and average 'Fixture B' skew while retaining the of Fixture skew values. Note that this addition should be done per differential signal path without mixing different pairs.
- 6. Round Fixture skew using the following rule: 0 ps to 1 ps = 1 ps, 1 ps to 2 ps = 2 ps; -1 ps to 0 ps = -1 ps, -2 ps to -1 ps = -2 ps.

Test Procedure for SFF-TA-1016 Mated Cable Assembly

7. Record fixture skew.

8.2.7 Flight Time

Measure flight time to obtain the actual flight time offset between the primary through and each secondary line for the TRL calibration. The time of flight is measured using a TDT measurement following the procedure shown below:

- 1. Make sure the TDR instrument is properly compensated at room temperature.
- 2. Set the screen scale to capture 50 ps/div and leave the acquisition mode to average.
- 3. Set one channel as the driver and the other the receiver.
- 4. Capture the primary through and save the waveform as a reference.
- 5. Connect the channels to Secondary 1 and capture the waveform and measure the flight time difference between Primary Through and the Secondary 1 (reference to 20% of the maximum voltage).
- 6. Repeat Step 4 for Secondary 2 and 3.
- 7. Record the flight time offsets of the secondary lines for TRL calibration.
- 8. Compare to design values.
- 9. Use measured delay values for TRL calibration.

Launch Connector Pair	Calibration Line	
J_HPRIM_A - J_HPRIM_B	PRIMARY THRU – 2.621"	
J_PRIM_A - J_PRIM_B	HALF PRIMARY THRU - 1.3105"	
J_SHORT	SHORT - 1.3105"	
J_SEC1A - J_SEC1B	SECONDARY 1 - 4.0607" / 207.6 ps / 0.4 GHz - 2.0 GHz	
J_SEC2A - J_SEC2B	SECONDARY 2 – 2.9089" / 41.5 ps / 2.0 GHz - 10 GHz	
J_SEC3A - J_SEC3B	SECONDARY 3 – 2.6786" / 8.3 ps / 10 GHz - 50 GHz	
J_CAL_A - J_CAL_B	CAL CHECK 3.197"	
J_LOAD	LOAD 5.242"	

Table 8-2 CYLLENE Mated Cable Evaluation Board TRL Calibration Launch Position vs TRL Line

8.2.8 Calibration Verification

8.2.8.1 Secondary Line Phase Margin

Verify secondary line phase margin on new boards. The phase plot should be linear over the secondary line frequency range. Secondary line phase margin should be greater than 20 degrees.

8.2.8.2 Calibration Stability

Verify the stability of the calibration using the insertion loss measurement of the primary through before and after completing the test plan. Absolute value of primary through loss |S21| after TRL calibration should be ≤ 0.1 dB up to 18 GHz and ≤ 0.2 dB above 18 GHz.

8.2.8.3 Dynamic Range

Verify the dynamic range is large enough to capture the crosstalk. The noise floor measurement is a crosstalk measurement between two distant traces. The crosstalk reading is the noise floor, which is the lower boundary of the dynamic range the VNA in use can support after the calibration. The noise floor should be less than -50 dB up to 8 GHz and less than -40 dB up to 18 GHz.

Test Procedure for SFF-TA-1016 Mated Cable Assembly

8.2.8.4 Check System Reference Impedance

Some tools do not correctly handle S-parameters with reference impedances other than 50 ohms. If using a reference impedance other than 50 ohms, check that the tool correctly recognizes the reference impedance used in the measurement. If using S-parameters to obtain the TDR result, examine the impedance in the time domain to ensure the target impedance is being correctly interpreted by the tool. For example, if measuring 85 ohm connectors, TDR impedance should be around 85 ohms. Helpful tips:

- Make a copy of the touchstone file.
- Edit the R parameter to change the stated reference impedance.
- Reload the data into the tool.
- Check that the tool recognizes the change by comparing insertion loss plots.
- If the tool recognizes the change, the tool is working correctly.
- If the tool does not recognize the change, the data must be normalized to 50 ohm reference impedance before using the tool.
- The reference impedance is the impedance of the TRL calibration lines on the board, which may not be 50 ohms. The VNA may report a default value of 50 ohms regardless of the TRL line impedance.

WARNING: IF THE VNA DOES NOT REPORT THE CORRECT REFERENCE IMPEDANCE, EDIT THE TOUCHSTONE FILE SO THAT IT ACCURATELY STATES THE CORRECT REFERENCE IMPEDANCE.

- Always distribute data files normalized to 50 ohm reference impedance.
- Use actual measurement data to compare measurement to modeled cable performance

8.2.8.5 TRL Four Port Calibration

A TRL calibration is intended to remove the effect of the fixture moving the reference plane to closest proximity to the fixed connector. The TRL calibration has the advantage that it can be easily tailored to impedances other than 50 ohms and can eliminate the need for de- embedding the test fixture. It has the disadvantage that it is not available on all machines and is not as familiar to many users as other calibration methods.

1. To remove previous data in the memory, reboot the VNA instrument.

WARNING: FAILURE TO REBOOT CAN RESULT IN UNSTABLE / UNUSABLE TRL CALIBRATION.

- 2. Set the start and stop frequencies for the TRL calibration in the instrument. Is important to notice that the maximum frequency it is given by the Allen Test described previously.
- 3. Set frequency step size to 10 MHz, number of averages to three, smoothing off, power to 0 dBm and IF bandwidth to 1 kHz.
- 4. For a (1,3;2,4) VNA configuration when performing a TRL calibration, set 1-2 and 3-4 as a defined Through and 2-3 and 1-4 as an unknown Through.
- 5. Load the calibration file in the equipment for Keysight.
- 6. Open the calibration wizard in the calibration menu and select smart calibration, (when using a Keysight VNA) and select 4 port calibration.
- 7. Select the calibration file for the Intel UPI connector.
- 8. Define the ports and run the calibration making the connections on the calibration fixture on

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Page 34

CYLLENE board (as described in Table 8-1 VNA Equipment Settings) following the wizard instructions.

9. Take notes of the delays and save the calibration. See Appendix B "VNA TRL Calibration" for more details.

9. Cable Assembly Frequency Domain Measurement

9.1 Port Naming Convention

Insertion and return loss are multi-port measurements using the port naming convention in the following figure. All differential pairs other than those being measured need to be terminated. Since wide band 42.5 ohm terminators do not exist, adjacent unused measurement ports can be terminated with 50 ohm terminators.

The measured S-parameter should be referenced to 85 ohm differential impedance for compliance check against the cable assembly specification.

Figure 9-1 VNA Port Naming Convention Example

	Right Angle Recptacle			Vertical Recptacle				
1		Terminate	Terminate			Terminate	Terminate	
		Fixed Connector	Fixed Connector			Fixed Connector	Fixed Connector	
		A Side	B Side			A Side	B Side	
	1	ground	ground	1	1	ground	ground	1
	2	ground	ground	2	2	ground	ground	2
	3	ground	ground	3	3	ground	ground	3
	4	ground	ground	4	4	ground	ground	4
	5	ground	ground	5	5	ground	ground	5
	6	ground	ground	6	6	ground	ground	6
	7	ground	ground	7	7	ground	ground	7
	8	ground	ground	8	8	ground	ground	8
	9	ground	ground	9	9	ground	ground	9
	10	ground	ground	10	10	ground	ground	10
	11	42.5 ohm	42.5 ohm	11	11	42.5 ohm	42.5 ohm	11
	12	42.5 ohm	42.5 ohm	12	12	42.5 ohm	42.5 ohm	12
Ι	13	ground	ground	13	13	ground	ground	13
	14	VLC	VLC	14	14	VLC	VLC	14
	15	VLC	VLC	15	15	VLC	VLC	15
Ι	16	ground	ground	16	16	ground	ground	16
	17	VLC	VLC	17	17	VLC	VLC	17
	18	VLC	VLC	18	18	VLC	VLC .	18
Ι	19	ground	ground	19	19	ground	ground	19
	20	VLC	VLC	20	20	VLC	VLC	20
	21	VLC	VLC	21	21	VLC	VLC .	21
	22	ground	ground	22	22	ground	ground	22
	23	42.5 ohm	42.5 ohm	23	23	42.5 ohm	42.5 ohm	23
	24	42.5 ohm	42.5 ohm	24	24	42.5 ohm	42.5 ohm	24
	25	ground	ground	25	25	ground	ground	25
	26	ground	ground	26	26	ground	ground	26
	27	ground	ground	27	27	ground	ground	27
	28	ground	ground	28	28	ground	ground	28
	29	ground	ground	29	29	ground	ground	29
	30	ground	ground	30	30	ground	ground	30
	31	ground	ground	31	31	ground	ground	31
	32	ground	ground	32	32	ground	ground	32
	33	ground	ground	33	33	ground	ground	33
1	34	ground	ground	34	34	ground	ground	34
	35	ground	ground	35	35	ground	ground	35
1	36	ground	ground	36	36	ground	ground	36
1	37	ground	ground	37	37	ground	ground	37
-1			_				_	

9.2 Fixed Connector Termination During Measurement

Figure 9-2 Mated Cable Assembly Evaluation Board Pin Termination: RAR, VR

9.3 Differential Insertion Loss (SDD21)

Differential insertion loss is calculated using the following equation shown below where S is formatted as a complex number.

Calculation of differential insertion loss SDD21 presuming ports 1 and 3 are driven, ports 2 and 4 are outputs is shown in Equation **9-1**.

Equation 9-1 Calculations for SDD21

$$SDD21(dB) = 20 \log_{10} \left[\frac{|S21 + S43 - S23 - S41|}{2} \right]$$

Test Procedure for SFF-TA-1016 Mated Cable Assembly

9.4 Differential Return Loss (SDD11 and SDD22)

Differential return loss is calculated using the following equation shown below where S is formatted as a complex number.

Calculation of differential return loss SDD11 presuming ports 1 and 3 are driven, ports 2 and 4 are outputs is shown in Equation 9-2.

Equation 9-2 Calculations for SDD11 and SDD22

$$SDD11(dB) = 20 \log_{10} \left[\frac{|S11 + S33 - S13 - S31|}{2} \right]$$
$$SDD22(dB) = 20 \log_{10} \left[\frac{|S22 + S44 - S24 - S42|}{2} \right]$$

The configuration of the cable assembly to carry out the differential measurements of insertion and return loss are shown in the following figures.

Figure 9-3 Vertical MCIO to Vertical MCIO, Insertion Loss/Return Loss, Tx to Rx Cable

Figure 9-4 Vertical MCIO to RA MCIO Tx to Rx Cable

Figure 9-5 Right Angle MCIO to Right Angle MCIO, Insertion Loss/Return Loss, Tx to Rx Cable

9.5 Crosstalk Measurement

Differential power sum crosstalk is calculated using the following equations shown below where S is formatted as a complex number.

9.5.1 Single-aggressor Near-end Crosstalk (DDNEXT)

Differential single-aggressor near end crosstalk (DDNEXT) on the victim differential pair is calculated by the following formula.

Equation 9-3 Calculations for DDNEXT

$$DDNEXT(dB) = 20 \log_{10} \left[\frac{|S21 + S43 - S23 - S41|}{2} \right]$$

9.5.2 Multi-Disturber Near-end Crosstalk (MDNEXT)

Multi-Disturber Near-End Crosstalk (MDNEXT) on the victim differential pair is calculated as a power sum using the following equation shown below where MDNEXT(f) is expressed in dB.

Equation 9-4 Calculations for MDNEXT

$$MDNEXT(f) = 10 \log_{10} \left(\sum_{n} 10^{\frac{DDNEXT(f)}{10}} \right) |_{n=1,2,3}$$

The configuration of the cable assembly to carry out the differential measurements of insertion and return loss are shown in the following figures.

Figure 9-6 Vertical Receptacle, NEXT RX Victim

Figure 9-7 Right Angle Receptacle, NEXT RX Victim, Tx to Rx Cable

9.6 Far End Crosstalk

9.6.1 Single-aggressor Far-End Crosstalk (DDFEXT)

Differential single-aggressor far end crosstalk (DDFEXT) on the victim differential pair is calculated by the following formula.

Equation 9-5 Calculations for DDFEXT

$$DDFEXT(dB) = 20log_{10} \left[\frac{|S21 + S43 - S23 - S41|}{2} \right]$$

9.6.2 Multi-Disturber Far-End Crosstalk (MDFEXT)

Multi-Disturber Far-End Crosstalk (MDFEXT) on the victim differential pair is calculated as a power sum using the following equation shown below where MDFEXT(f) is expressed in dB.

Equation 9-6 Calculations for MDFEXT

$$MDFEXT (f) = 10 \log_{10} \left(\sum_{n} 10^{\frac{DDFEXT(f)}{10}} \right) |_{n=1,2,3}$$

The configuration of the cable assembly to carry out the differential measurements of insertion and return loss are shown in the following figures.

Figure 9-8 Vertical to Vertical, FEXT Rx Victim, Tx to Rx Cable

Figure 9-9 Vertical to Right Angle, FEXT Rx Victim, Tx to Rx Cable

Figure 9-10 Vertical to Right Angle, FEXT Rx Victim, Tx to Rx Cable

9.7 MDFEXT Without Fixture FEXT (MDFEXT_{woff})

Test boards may include fixture FEXT contributions that might be significant to verification assessments. Fixture FEXT may be removed using these steps:

- 1. Identify the worst case single-aggressor DDFEXT measurement including fixture, DDFEXT_{wc}.
- 2. Identify the insertion loss measurement of the victim position, SDD21_v.
- 3. Identify the fixture FEXT measurement, FEXT_{spider}.
- 4. Subtract fixture FEXT from worse case aggressor (DDFEXT_{wcawf}) as shown in Equation 9-7.

Equation 9-7 Calculations for DDFEXTwc Without Fixture FEXT

 $DDFEXT_{wcawf} = 20 \log_{10}(|DDFEXT_{wc} - (SDD21_v x FEXT_{spider})|)$

5. Calculate multi-aggressor FEXT without fixture FEXT (MDFEXT_{woff}) as shown in Equation 9-8 where N is the number of lesser aggressors and MDFEXT_{woff} is expressed in dB.

Equation 9-8 Calculations for MDFEXT Without Fixture FEXT

$$MDFEXT_{woff}(f) = 10 \log_{10} \left(10^{\frac{DDFEXT_{wcawf}}{10}} + \sum_{n} 10^{\frac{DDFEXT_{n}}{10}} \right) |_{n = 1, 2, \dots N}$$

9.8 Effective Intra-Pair Skew (EIPS)

The effective skew calculation starts from the frequency domain skew, which is captured from the modified mixed-mode insertion loss. The modified mixed-mode insertion loss relates the differential input to the single-ended output while accounting for the coupling within a differential pair properly. The modified mixed-mode insertion loss, S2d1, and S4d1, which relate the differential input to the single-ended outputs within a 4-port system, are depicted in Figure 9-11. The intra-pair skew addition mechanism is illustrated in Figure 9-12.

Figure 9-11 Modified Mixed-Mode Insertion Loss, S2d1 and S4d1

Figure 9-12 Intra-Pair Skew Introduction to a 4-Port System

The modified mixed-mode insertion loss can be represented by the single-ended S-parameter equations.

Equation 9-9 Calculations for S2d1 and S4d1

 $S2d1 = 1/\sqrt{2} \cdot (S21 - S23)$ $S4d1 = 1/\sqrt{2} \cdot (S43 - S41)$

The frequency domain skew, skew(f) is obtained by calculating the difference between two phase delays.

Equation 9-10 Calculations for Skew

 $\Delta t_{1} = -unwrap(phase(S2d1))/2\pi f$ $\Delta t_{2} = -unwrap(phase(S4d1))/2\pi f$ $skew(f) = \Delta t_{1} - \Delta t_{2}$

The calculated frequency domain skew is multiplied by a weighting function, which is the product of power spectral density of the random binary sequence and skew impact on the normalized mode conversion. EIPS is the weighted frequency domain skew and is integrated over the frequency region up to $1.5 \times (Nyquist frequency, f_N)$,

Equation 9-11 Calculations for Effective Intra-pair Skew

 $S43_{0ps} = S43 \times e^{j2\pi f skew}$ $S41_{0ps} = S41 \times e^{j2\pi f skew}$

 $SDD21_{0ps} = (S21 + S43_{0ps} - S23 - S41_{0ps})/2$ $SCD21_{0ps} = (S21 - S23 + S41_{0ps} - S43_{0ps})/2$

$$|skew(f)| = \frac{unwrap(angle(S2d1/S4d1))}{2\pi f}$$

$$ID(f) = |20\log_{10}|SCD21_{0ps}| - 20\log_{10}|SDD21_{0ps}| - (20\log_{10}|SCD21| - 20\log_{10}|SDD21|)|$$

$$W(f) = sinc^{2} \left(\frac{f}{f_{b}}\right) \left(\frac{1}{1 + \left(\frac{f}{f_{t}}\right)^{4}}\right) \left(\frac{1}{1 + \left(\frac{f}{f_{r}}\right)^{8}}\right)$$

Test Procedure for SFF-TA-1016 Mated Cable Assembly

Page 44 Copyright © 2024 SNIA. All rights reserved.

$$EIPS = \frac{\sum_{\substack{f=min \\ f=min \\ Step=10MHz}}^{f=max} (ID(f) \times W(f) \times |skew(f)|)}{\sum_{\substack{f=min \\ f=min \\ Step=10MHz}}^{f=max} (ID(f) \times W(f))}$$

... where $f_b = 2 \times (Nyquist \text{ frequency}, f_N)$, $f_r = 0.75 \times f_b$, $f_{max} = 1.5 \times (Nyquist \text{ frequency}, f_N)$, $f_{min} = \text{minimum}$ data provided.

Calculate |Scd21-Sdd21|impacted by skew_{max} in dB. First calculate maximum skew in magnitude over the frequency of interest, up to $1.5 \times f_N$ and calculate |Scd21- Sdd21|impacted by skew_{max} in dB from the S-parameter matrix shown below.

Equation 9-12 S-parameter Matrix for Calculationg Maximum Skew

- <i>S</i> 11	<i>S</i> 12	<i>S</i> 13	$S14e^{j2\pi f skew_{max}}$]
<i>S</i> 21	S22	<i>S</i> 23	<i>S</i> 24
<i>S</i> 31	S32	<i>S</i> 33	$S34e^{j2\pi f skew_{max}}$
$S41e^{j2\pi f skew_{max}}$	S42	S43e ^{j2πfskew} max	S44

9.9 Effective Pair-to-Pair Skew (EPPS)

The Effective Pair-to-Pair Skew (EPPS) is the flight time delta between two differential pairs. The flight time is captured from phase delay, which is captured from differential insertion loss,

Figure 9-13 2 Differential Pair Port Map

Equation 9-13 Calculations for Pair-to-Pair Skew

$$\Delta f light_time_1 = -\frac{unwrap(phase(Sdd12))}{(2\pi f)}$$

$$\Delta f light_time_2 = -\frac{unwrap(phase(Sdd34))}{(2\pi f)}$$

pair-to-pair skew(f) = $\Delta f light_time_1(f) - \Delta f light_time_2(f)$

... where Sdd12 and Sdd34 are insertion loss which can be calculated from single-ended S-parameters as shown below.

Equation 9-14 Calculations for Insertion Loss, Sdd12 and Sdd34

 $\begin{array}{l} Sdd12 = \frac{1}{2} \cdot (S21 - S41 - S23 + S43) \\ Sdd34 = \frac{1}{2} \cdot (S65 - S85 - S67 + S87) \end{array}$

Once frequency domain skew is calculated, the calculated frequency domain skew is multiplied by a weighting function which is the power spectral density of a random binary sequence. Effective Pair-to-Pair Skew (EPPS) is obtained by integrating the weighted frequency domain skew over the frequency region up to $1.5 \times (Nyquist frequency, f_N)$.

Equation 9-15 Calculations for Effective Pair-to-Pair Skew

$$EPPS = \int_{f_{min}}^{f_{max}} W(f) \cdot |skew(f)| df$$
$$W(f) = \frac{sinc^2 \left(\frac{2\pi f}{f_N}\right)}{\int_{f_{min}}^{f_{max}} sinc^2 \left(\frac{2\pi f}{f_N}\right) df}$$

... where f_{max} is set at 1.5×(Nyquist frequency, f_N).

9.10 Mated Cable Assembly Skew Measurement

1. Insert cable assembly into the test fixtures for the full channel measurement. The test set up is depicted in the following figure.

Figure 9-14 Skew Measurement Test Set

2. Capture the test set intra-pair skew from IL measurement of each differential pair in the test plan, defined as 'test set skew'. The test set skew is calculated using the equations as shown below and the maximum value over the frequency range is picked.

Equation 9-16 Calculations for Test Set Skew

$$Freq_{skew} = MovingAverage (Phase_{delay1} - Phase_{delay2})$$

... for 5 GHz $\leq f \leq 24$ GHz, where ...
$$Phase_{delay1} = \frac{unwrap(angle(S2D1))}{2\pi f}$$
$$Phase_{delay2} = \frac{unwrap(angle(S4D1))}{2\pi f}$$
... and ...
$$S2D1 = \frac{1}{\sqrt{2}}(S21 - S23)$$
$$S4D1 = \frac{1}{\sqrt{2}}(S43 - S41)$$

The window size of the moving average is 100 points.

3. Calculate DUT skew by subtracting absolute value of rounded fixture skew from absolute value of the test set skew.

9.11 Impedance Measurement

9.11.1 Rise Time

Ensure a 15 psec (20-80%) rise time is achieved at the end of the half primary through such that the proper rise time is set at the reference plane.

9.11.2 Instantaneous Impedance

For a given $85 \pm Zi$ Ohm instantaneous impedance specification one would evaluate as follows.

Figure 9-15 Instantaneous Impedance Example

9.11.3 Average Impedance

For a given $85 \pm Za$ Ohm average impedance specification one would evaluate as follows

Figure 9-16 Average Impedance Example

10. Cable Assembly Test Plans

10.1 Vertical Receptacle to Vertical Receptacle, MCA Measurement, Rx to Tx

Cable

		_	_	_			_	_	_	_	-			-	_		_	_	_	_	_		-	-		_	•					_	-				_	_	T		_	_	_	
-					VNA5244		1	•		IN OUT	m (
Cyllene VR (Vertical Receptacle Target)	Cable PLUG 2 = Cable PORT 2 = P2 = p2 Cable PLUG 1 = Cable PORT 1 = P1 = p2	check IL STOP freq of acceptable TRL cal	check IL ST OP freq of acceptable TRL cal	HALF THRU, verify 23 ps rise time , 20%-80%	SEC_1 TRL Delay input	SEC_2 TRL Delay input	SEC_3TRL Delay input	PRIMARY THROUGH - IL measurement quality check	PRIMARY THROUGH -IL measurement quality check	CAL CHECK -IL measurement quality check	CAL CHECK -IL measurement quality check	NOISE FLOOR measurement using IL	FIXTURE FEXT measurement	THROUGH 1	THROUGH 2	THROUGH 3	THROUGH 4	THROUGH 5	THROUGH 6	PSNEXT, Vertical-Tx Victim (pair 1)	PSNEXT, Vertical, Tx-victim (pair 2)	PSNEXT, Vertical, Tx-victim (pair 3)	PSNEXT, Vertical-Rx Victim (pair 1)	PSNEXT, Vertical-Rx Victim (pair2)	PSNEXT, Vertical-Rx Victim (pair 3)	PSFEXT, Vertical-Rx Victim (pair 1)	PSFEXT, Vertical-Rx Victim (pair 2)	PSFEXT, Vertical-Rx Victim (pair 1)	PSFEXT, Vertical-Rx Victim (pair 2)	PRIMARY THROUGH - IL measurement quality check	PRIMARY THROUGH -IL measurement quality check	Comments (+ = + side of TDR head)	the input, check rise time at ref plane											ive input, check rise time at ref plane
eceptacle Root)		ALLEN	ALLEN	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL	IL / RL	IL / RL	IL / RL	IL / RL	IL / RL	IL / RL	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	FEXT	FEXT	FEXT	FEXT	CAL	CAL	Test Type	positive and nega	Differential	Impedance	Differential	aniipenaluu	Unterential	Differential	Impedance	Differential	aniinenaine	Differential	positive and negat
ne VR (Vertical R	VNA Port4 - OUT		9ĉ						J6		J16	J47	J49	J36-PETp3	J35-PETp2	J37-PETp4	J30-PERp3	J29-PERp2	J31-PERp4	J36-PETp3	J36-PETp3	J36-PETp3	J30-PERp3	J30-PERp3	J30-PERp3	J36-PETp3	J36-PETp3	J30-PERp3	J30-PERp3		JPRIM_B	Test File output			(ə:	ouep	ədu	ni , ər	nit ,	əget	jov) /	so.	•	
Cylle	VNA Port2 - OUT	JG		111	J5	J10	J15	JG		J16		J42	J45	J39-PETn3	J38-PETn2	J40-PETn4	J33-PERn3	J32-PERn2	J34-PERn4	J39-PETn3	J39-PETn3	J39-PETn3	J33-PERn3	J33-PERn3	J33-PERn3	J39-PET n3	J39-PET n3	J33-PERn3	J33-PERn3	JPRIM_B		Board Combinations	CYLLENE VR			CYLLENE VR					CYLLENE VR			CYLLENE VR
	VNA Port3 -IN		4						74		J14	J41	141	J30-PERp3	J29-PERp2	J31-PERp4	J36-PETp3	J35-PETp2	J37-PETp4	J30-PERp3	J29-PERp2	J31-PERp4	J36-PETp3	J35-PETp2	J37-PETp4	J31-PERp4	J29-PERp2	J37-PETp4	J35-PETp2		J_PRIM_A	TDT Output	111											J11
	VNA Port1 - IN	J4		J8	ß	96 Г	J13	J4		J14		J48	J48	J33-PER n3	J32-PER n2	J34-PER n4	J39-PETn3	J38-PETn2	J40-PETn4	J33-PERn3	J32-PERn2	J34-PERn4	J39-PETn3	J38-PETn2	J40-PETn4	J34-PERn4	J32-PERn2	J40-PETn4	J38-PETn2	J_PRIM_A		(+ = + side of TDR	ßĹ	J33	J30	J32 100	67 C	134 134	139	J36	J38 101	02n	J40 J37	J8
	Group	Pre-Cal	Check		1			Pre-measure	Calibration							Q.					(VR-Tx Victim)			PSNEXT (VR-Rx Victim)		PSFEXT	(VR-T × Victim)	PSFEXT	(VR-Rx Victim)	Post-Measure	Cal Check	Group Bro Col aboot	Pre-measure Calibration											
	Test #	ALLEN1	ALLEN2	CAL1	CAL2	CAL3	CAL4	CAL5	CAL6	CAL7	CAL8	CAL9	CAL10	1	2	3	4	5	6	7	8	9	8	6	10	11	12	11	12	CAL11	CAL12	Test #	CAL 13	ę	2	13		14		15	16		17	CAL 14
	Eauip	VNA	VNA	TDT	TDT	TDT	TDT	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	Equip	TOT	TDR		TDR	6	r -	TDR		TDR	C C F	2	TDT
	Calibration Type	DelayMeas	DelayMeas	Rise Time Meas	DelayMeas	DelayMeas	DelayMeas	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	Calibration Type	Edge rate (ER) check	ER		ER	£	Ĕ	E		Ш	£	Ĕ	Edge rate (ER) check
	Test Objective	1-10-1-0-0	Pre-Cal Noise Check		- sck	u) a	inré	Fixt	8	əldi	21 21	səT		tu	эш	nre	see	W	əld	вЭ	pəi	isM	ı צ	N-Я	٨٥	CIC	W			120 120 120 120 120 120 120 120 120 120	Pc Measu Cal C	Test Objective	5 C	inoi, S	uoit isini uoi	nelat 5 Exc eriza 0-8(Col acti 3, 2(indel Silqri Silane Silane	, M Cor file file	nen ing (the i	sure shool ance B at	3 b ped ples	n noiT MI 2	CAL

						_	_	_	_	_	-							-		_	-	± \	_	-	-			_			-														Т			Т		—	
					VNA5244A	IN OUT	1	• •	Ē	N							T				1																														
	Cable PLUG Z = Cable PORT z = PZ = pZ Cable PLUG 1 = Cable PORT 1 = P1 = p2	check IL STOP freq of acceptable TRL cal	check IL STOP freq of acceptable TRL cal	HALF THRU, verify 23 ps rise time , 20%-80%	SEC_1 TRLDelay input	SEC_2 TRL Delay input	SEC_3TRL Delay input	PRIMARY THROUGH - IL measurement quality check			CAL CHECK -IL measurement quality check	INUISE FLOOK measurement using iL FIXTLIRE FEXT measurement					THEOLIGH &	THROUGH 6	PSNEXT. Vertical-Rx Victim (pair 1)	PSNEXT. Vertical-Rx Victim (oair2)	PSNEXT, Vertical-Rx Victim (pair 3)	PSNEXT, Vertical-Rx Victim (pair 1)	PSNEXT, Vertical-Rx Victim (pair2)	PSNEXT, Vertical-Rx Victim (pair 3')	PSNEXT, Vertical-Rx Victim (pair 1)	PSNEXT, Vertical-Rx Victim (pair2)	PSNEXT, Vertical-Rx Victim (pair 3)	PSNEXT, Vertical-Rx Victim (pair 1)	PSNEXT, Vertical-Rx Victim (pair2)	PSNEXT, Vertical-Rx Victim (pair 3')	PSFEXT, RA-Rx Victim (pair 1)	PSFEXT, RA-Rx Victim (pair 2)	PSFEXT, RA-RX Victim (pair 1)	PSFEXT, RA-RX Victim (pair 2) PSFEXT_RA-PX Victim (nair 1)	PSFEXT, RA-RX Victim (pair 2)	PSFEXT, RA-Rx Victim (pair 1)	PSFEXT, RA-RX Victim (pair 2)			Comments (+= + side of LUK head) deskew receiver and transmitter (including board)	ive input, check rise time at ref plane										ve input, check rise time at ref plane
	Test Type	ALLEN	ALLEN	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL		ור/וצר	1L/RL	IL/RL	11 / 101	11 /RI	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	FEXT	FEXT	FEXT	FEXT	FEXT	FEXT	FEXT	CAL	T	l est l ype	positive and negal	Differential	Impedance	Differential	Differential	Impedance	Differential	Differential	Impedance	Differential Impedance	positive and negati
ngle Target)	VNA Port4 - OUT		JG					9	5	01	J16	74U	104 DETAO	124-FE1p3	JZ3-PETp2	JZ5-PE1P4	117-PETD3	119-PERn4	J36-PETp3	J36-PETp3	J36-PETp3	J24-PETp3	J24-PETp3	J24-PETp3	J30-PETp3	J30-PETp3	J30-PETp3	J18-PERp3	J18-PERp3	J18-PERp3	J36-PETp3	J36-PETp3	J30-PERp3	J30-PERp3	J18-PERp3	J24-PETp3	J24-PETp3	5		I est File output			(ə:	ouepa	ədw	i ,əm	џ 'əб	etlov	N) AS3	".	
ene RAR (Right A	VNA Port2 - OUT	JG		J11	J5	J10	J15	JG	110	9LP	140	142 .145	107 DETAO	UZ/-FEIII3	J20-PE INZ	J28-PE104	120.PETn2	122-PERn4	J39-PETn3	J39-PETn3	J39-PETn3	J27-PETn3	J27-PETn3	J27-PETn3	J33-PETn3	J33-PETn3	J33-PETn3	J21-PERn3	J21-PERn3	J21-PERn3	J39-PETn3	J39-PETn3	J33-PERn3	J33-PERN3	J21-PERn3	J27-PETn3	J27-PETn3	90	and the state of t	Board Combinations	CYLLENE VR			CYLLENE VR					CYLLENE RAR		CYLLENE VR
ertical Root), Cyll	VNA Port3 -IN		4L					3	40		114	141	130 DEDa		J29-PERP2	J31-PEKp4	135-PETh2	137-PETn4	J30-PERp3	J29-PERn2	J31-PERp4	J18-PERp3	J17-PETp2	J19-PERp4	J36-PETp3	J35-PETp3	J37-PETp3	J24-PETp3	J23-PETp2	J25-PETp4	J19-PERp4	J17-PETp2	J25-PETp4	J23-PE1p2 .137-PETn3	J35-PETp2	J31-PERp4	J29-PERp2	3	40	I DI Onbrit	111										111
Cyllene VT (V	VNA Port1 - IN	46		JB	J3	66	J13	46	1	410	9	148 148	193 DEDag		J3Z-PERNZ	134-PEKN4 130-DET n2	138-PET n2	.140-PET n4	J33-PERn3	J32-PERn2	J34-PERn4	J21-PERn3	J20-PET n2	J22-PERn4	J39-PET n3	J38-PET n3	J40-PETn3	J27-PETn3	J26-PET n2	J28-PETn4	J22-PERn4	J20-PET n2	J28-PET n4	J26-PET n2	J38-PETn2	J34-PERn4	J32-PERn2	40	I THE PLANE		8ſ	J35	J36	J34 Inte	200	J38	J26 175	18 18	J17	J21 J22	8ſ
	Group	Pre-Cal	Check				ľ	Pre-measure Calibration								IL/RL				PSNEXT PSNEXT			(RAR-TY Victim)			(VR-Rx Victim)		172	(RAR-Rx Victim)		PSFEXT	(VK-LX VICTIM)	PSFEXT //R-Rv Virtim)	DSFEXT	(RAR-Tx Victim)	PSFEXT	(RAR-Rx Victim)	Post-Measure		Pre-Cal check	Pre-measure Calibration										
	Test #	ALLEN1	ALLEN2	CAL1	CAL2	CAL3	CAL4	CAL5	CALD	CAL	CALB	CALS CAL10		- c		,ο -	τu	n w	~	~	6	10	11	12	7	8	6	10	11	12	13	14	15	16	14	15	16	CAL11	CAL12	1 est #	CAL 13		17	18		19	20		21	22	CAL 14
	Equip	٧NA	VNA	трт	TDT			ANV ANV		ANV ANV	VNA VNA		VINIA	VIAN	ANV	VNA	VNA	VNA	ANV	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	VNA	AN V	ANV	VNA	VNA	VNA	VNA	VNA	ANV	- TDR	TDT	TDR		TDR	aCF	í	TDR	TDR	Í	TDR	TDT
	Calibration Type	Delay Meas	Delay Meas	Rise Time Meas	Delay Meas	Delay Meas	Delay Meas	TRL 1		IR.		TRI	TRI	TRI	IN I	TRI	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRL	TRI	TRL	TRL	TRL			transmitter deskew	Edge rate (ER) check	ER		ER	ä		ER	ER	i	ER	Edge rate (ER) check
	Test Objective	Pre-Cal Noise Check			рес) ə.	xtur	8 Ei	əli	deC) tee	эТ				;	ļuə	wə	anı	e9	M	əldı	5C9	pəi	вM	Яı	אר אר	-\ (M	1						2 US	Post t f f f	A	Cal	ī	ک،رو	ion) ursid tion) ion	trelat etiza etiza	I Co ance inact e, 2	ildmo Cha Cha	ent, I g (Cc Profile ref	men notio 1 ec 1 ti 1 ti	sd (uepə oysəli nseəj	M dml 23	CAL

10.2 Vertical Receptacle to RA Receptacle, MCA Measurement, Rx to Tx Cable

Table 10-2 VR to RA Test Plan

_		_	_		_							_	_	1	Га	b	le	2	10)-	3		R	A	t	D	R	A	Т	e	s	t Pla	an												_
	Notes				VNA5244A	N	1	•		IN OUT	₩ (
	Cable PLUG 2 = Cable PORT 2 = P2 = p2 Cable PLUG 1 = Cable PORT 1 = P1 = p2	check IL STOP freq of acceptable TRL cal	check IL STOP freq of acceptable TRL cal	HALF THRU, verify 23 ps rise time , 20%-80%	SEC_1 TRLDelay input	SEC_2 TRL Delay input	SEC_3TRL Delay input	PRIMARY THROUGH - IL measurement quality check	PRIMARY THROUGH -IL measurement quality check	CAL CHECK -IL measurement quality check	CAL CHECK -IL measurement quality check	NOISE FLOOR measurement using IL	FIXTURE FEXT measurement	THROUGH 1 (pair 1)	THROUGH 2 (pair 2)	THROUGH 3 (pair 3)	THROUGH 4 (pair 4)	THROUGH 5 (pair 5)	THROUGH6 (pair 6)	PSNEXT,Rx Victim_bottom (pair 1)	PSNEXT, Rx Victim_bottom (pair 2)	PSNEXT, R*victim_bottom (pair 3)	PSNEXT,Rx Victim_bottom (pair 1)	PSNEXT, Rx Victim_bottom (pair 2)	PSNEXT, R*-victim_bottom (pair 3)	PSFEXT, Rx Victim_top (pair 1)	PSFEXT, Rx Victim_top (pair 2)	PSFEXT, Rx Victim_top (pair 1)	PSFEXT, Rx Victim_top (pair 2)	PRIMARY THROUGH - IL measurement quality check	PRIMARY THROUGH -IL measurement quality check	Comments (+ = + side of TDR head)	deskew receiver and transmitter (including board)	tive input, check rise time at ref plane											we input, check rise time at ref plane
	TestType	ALLEN	ALLEN	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL	CAL	IL/ RL	IL/ RL	NEXT	NEXT	NEXT	NEXT	NEXT	NEXT	FEXT	FEXT	FEXT	FEXT	CAL	CAL	TestTvoe		positive and nega	Differential	Impedance	Differential	Impedance	Differential	Differential	Impedance	Differential	Impedance	Unterential	positive and negat				
	VNA Port4 - OUT		J6						JG		J16	J47	J49	J24 - B17_TX_3_DP	J23 - B14_TX_2_DP	J25 - B20_TX_4_DP	J18 - A17_Rx_3_DP	J17 - A15_RX_2_DP	J19 - A20_Rx_4_DP	J18 - A17_Rx_3_DP	J18 - A17_Rx_3_DP	J18 - A17_Rx_3_DP	J24 - B17_TX_3_DP	J24 - B17_TX_3_DP	J24 - B17_TX_3_DP	J18 - A17_Rx_3_DP	J18 - A17_Rx_3_DP	J24 - B17_TX_3_DP	J24 - B17_TX_3_DP		J6	Test File output			-	(84	ouep	iədu	ni ,er	mit ,	əɓeı	ION)	vso.		
YILLENE RAR - TARGET	VNA Port2 - OUT	9ſ		J11	J5	J10	J15	J6		J16		J42	J45	J27 - B18_Tx_3_DN	J26 - B15_TX_2_DN	J28 - B21_Tx_4_DN	J21 - A18_Rx_3_DN	J20 - A15_RX_2_DN	J22 - A21_Rx_4_DN	J21 - A18_Rx_3_DN	J21 - A18_Rx_3_DN	J21 - A18_Rx_3_DN	J27 - B18_Tx_3_DN	J27 - B18_Tx_3_DN	J27 - B18_Tx_3_DN	J21 - A18_Rx_3_DN	J21 - A18_Rx_3_DN	J27 - B18_Tx_3_DN	J27 - B18_Tx_3_DN	J6		Board Combinations	n/a	CYLLENE VR			CYLLENE RA - ROOT					CYLLENE RA - TARGET			CYLLENE VR
YLLENE RAR - ROOT, C	VNA Port3 -IN		J4						J4		J14	J41	J41	J18 - A17_Rx_3_DP	J17 - A15_RX_2_DP	J19 - A20_Rx_4_DP	J24-B17_TX_3_DP	J23-B14_TX_2_DP	J25-B20_TX_4_DP	J24-B17_TX_3_DP	J25-B20_TX_4_DP	J23-B14_TX_2_DP	J18-A17_Rx_3_DP	J17 - A15_RX_2_DP	J19- A20_Rx_4_DP	J25-B20_TX_4_DP	J23-B14_TX_2_DP	J19 - A20_Rx_4_DP	J17 - A15_RX_2_DP		J4	TDT Output		111											111
	VNA Port1 - IN	J4		J8	J3	9f	J13	J4		J14		J48	J48	J21 - A18_Rx_3_DN	J20 - A15_RX_2_DN	J22 - A21_Rx_4_DN	J27 - B18_Tx_3_DN	J26 - B15_TX_2_DN	J28 - B21_Tx_4_DN	J27 - B18_Tx_3_DN	J28 - B21_Tx_4_DN	J26 - B15_TX_2_DN	J21 - A18_Rx_3_DN	J20 - A15_RX_2_DN	J22 - A21_Rx_4_DN	J28 - B21_Tx_4_DN	J26 - B15_TX_2_DN	J22 - A21_Rx_4_DN	J20 - A15_RX_2_DN	J4		TDR Input/TDT Input (+ = + side of TDR head)		JB	J20	J17	J2f	J18	J22 110	BCI	J23	72f	J24	J25 J25	J8
	Group	Pre-Cal	Check					Pre-measure	Calibration							10/11	1414			PSNEXT	(RAR-Rx Victim)			PSNEXT (RAR-Tx Victim)		PSFEXT		PSFEXT (PAB-Tv V(crfm)		Post-Measure	Cal Check	Group	Pre-Cal check	Pre-measure Calibration											
	tuip Test #	NA ALLEN1	NA ALLEN2	DT CAL1	DT CAL2	DT CAL3	DT CAL4	NA CAL5	NA CAL6	NA CAL7	NA CALB	NA CAL9	NA CAL10	NA 1	NA 2	NA 3	NA 4	NA 5	NA 6	NA 7	NA 8	9 AN	NA 7	NA 8	9 AN	NA 10	NA 11	NA 10	NA 11	NA CAL11	NA CAL12	tuio Test#	К	DT CAL 13	K	12	DR 13	2	DR 14	6	15	DR 16	2	17	DT CAL 14
	libration Type Ec	Delay Meas VI	Delay Meas	Rise Time Meas T	Delay Meas T	Delay Meas T.	Dolay Moas T.	TRL	TRL	TRL	TRL	TRL V	TRL	TRL V	TRL V.	TRL V	TRL V.	TRL V	TRL	TRL	TRL	TRL	TRL	TRL	TRL V	TRL	TRL V.	TRL V	TRL V.	TRL	TRL V	Ibration Type	receiver and T	dge rate (ER) T	ER		ER		ER	6	-	ER	Ē	-	dge rate (ER) T
	Test Objective Ca	Pro O Maine Ohnels		:	ieck	a Ch	un	ixiA	8	əldı	20 ±	591			1 /	ldr	LGU SGL	nse se	əld	i nii	ЯA	op /	₹¥₽	ənt d O	NCI	H H				Post Measument	Cal check	Test Objective Ca	TD Skew Check tran.	TD Cal Check Et		%	0-806 ueu ojÀ	emt urer i, 20	elyts esse ension	ole ble ble ble	pus pous pa cs WC	ateM 2 en 16 ec	53 t		TD Cal Check Er

10.3 RA Receptacle to RA Receptacle, MCA Measurement, Rx to Tx Cable

Appendix A System Mechanical Specification for Connector-only Testing

- 3 A.1 VNA AFR Measurement Templates
- 4 A.2 Vertical Connector Mechanical Fixture
- 5 A.3 Vertical Connector Test Board Bill of Materials
- 6 A.4 Right Angle Connector Mechanical Fixture
- 7 A.5 Right Angle Connector Test Board Bill of Materials
- 8

Appendix B Cyllene Bill of Materials For Cable Assembly Testing

2

Table B-1 Cyllene Bill of Materials

Item Typ	Item No	Item Desc	AID	N	Location/ID	Mfr Name	Mfr Part
STEM-MOTHERBOARD	X66997-100	PBA,MB,CYLLENE,FAB1,	0	4	MPTY LOCATIONS MH-STES: NH2, MH2, MH3, MH4, MH5, MH7, MH8, NH1, MH10, MH11, MH12		
PRINTEDBOARD	X66996-001	PB, APD, CYLLENE, 6.0, 010IN, 0.006IN,	-	4			
SISTOR-DISCRETE		RES_0,0201,88,70HM,1.00%,1/20W,	-	AR	n		
				54 (2			
SISTOR-DISCRETE		RES_0,0201,820HM.1.00%,1/20W.	-	AR	2		
				8 8			
0.0000000000000000000000000000000000000							
SISTOR-DISCRETE	A47430-014	RES D,0402,42.20 CHIN,1.00%,1/16W,YES	16	A R	110, R11, R12, R13, R14, R15, R16, R17, R18, R3, R4, R5, 16, R7, R8, R9		
NN_RF	H14229-002	Conn_RF,2.4,5TD,50,06HZ,1,VT,CMP,GOLD,MT,1	46	N C	10, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 23, 23, 124, 125, 126, 127, 128, 129, 13, 134, 134, 134, 134, 134, 134, 134,	HIROSE ELECTRIC (U.S.A.), INC.*	H2.4-R-5R2-IN(37)
				2 2	35, 136, 137, 138, 139, 141, 140, 141, 142, 144, 145, 147, 148, 49, 15, 150, 16, 17, 18, 19		
INN CARD EDGE	K64129-002	CONN, CEDG, 74P, HSEC, VT, 0.600mm, SMT, BK		A. 11	1	AMPHENOL*	697V22312HR
INN CARD EDGE	K64130-002	CONN, CEDG, 74P, HSEC, RA, 0.600mm, SMT, BK	-1	A II		AMPHENOL*	G97R22312HR

1 Appendix C VNA TRL Calibration

2 C.1 TRL Calibration Crossover Frequencies

The TRL calibration kit designed to remove the test fixture effect from the S-parameter measurement are included in the connector evaluation board design using the standards shown in Table C-1.

5 6

Table C-1 TRL Calibration Kit Crossover Frequencies

Frequency Ranges	Description
DC to \leq 0.4 GHz	Load 1 and Load 2
> 0.4 to ≤ 2.0 GHz	Secondary #1
> 2.0 to ≤ 10.0 GHz	Secondary #2
> 10.0 to ≤ 50.0 GHz	Secondary #3

7 8

9 C.2 TRL Calibration E-cal and Fixture Bandwidth

10 TRL calibration requires preparation including e-cal, fixture bandwidth assessment and measured secondary 11 delay times. Table C-2 shows the typical steps used to assess fixture bandwidth.

12

13

Table C-2 E-cal and Fixture Bandwidth Checks

Step	Description
1	Restart the VNA
2	Set the frequency sweep
3	Set the port power
4	Set Averaging and IF bandwidth
5	Set e-cal calibration (3 defined throughs)
6	Save the calibration
ECAL1	IL, RL measurement of Primary through
ECAL2	IL, RL measurement of Primary through

1 C.3 Initial TRL Calibration Steps 1 - 22

TRL calibration requires several steps. Table C-3, Table C-4, and Table C-5 show the typical steps used to
 achieve stable TRL calibration.

4 5

Table C-3 Initial TRL Calibration Steps

Step	Description
1	Restart the VNA
2	Recall the e-cal
3	Insert a new cal kit
4	Edit Cal Kit Information
5	TRL Cal Kit Setup: Open
6	TRL Cal Kit Setup: Short
7	TRL Cal Kit Setup: Load
8	TRL Cal Kit Setup: Primary Through
9	TRL Cal Kit Setup: Secondary 1 (use measured delay time)
10	TRL Cal Kit Setup: Secondary 2 (use measured delay time)
11	TRL Cal Kit Setup: Secondary 3 (use measured delay time)
12	TRL class assignment: TRL Through
13	TRL Class assignment: TRL Reflect
14	TRL Class assignment: TRL Line/Match
15	TRL Class assignment: Isolation
16	Set the frequency sweep
17	Set the port power
18	Set Averaging and IF bandwidth
19	TRL Guided Calibration (2 defined throughs + 2 unknown throughs or 2 defined throughs + 4 unknown unknown throughs) <u>Type1</u> (1) <u>defined</u> (2) (3) <u>defined</u> (4) <i>Type2</i> (1) <u>defined</u> (2) (1) <u>defined</u> (2) (1) <u>defined</u> (2) (1) <u>defined</u> (4) <i>Note:</i> Choice of 2 + 2 or 2 + 4 depends on VNA firmware. Use Type 1 on initial calibration, use Type 2 to address TRL cal instability.
20	SmartCal (GUIDED Calibration)
21	DUT Connector selection
22	Modify Cal

C.4 Final TRL Calibration Steps Using 2 Defined Throughs + 2 Unknown Throughs

Final TRL calibration steps 23 to 43 and TRL calibration check using 2 defined throughs + 2 unknown
 throughs are shown in Table C-4.

5 6

Step	Description
23	Guided Calibration
24	Guided Calibration Step 1 of 18: Connect Port 1 to Short
25	Guided Calibration Step 2 of 18: Connect Port 2 to Short
26	Guided Calibration Step 3 of 18: Connect Port 1 to Port 2
27	Guided Calibration Step 4 of 18: Connect Port 1 and Port 2 to Secondary 3
28	Guided Calibration Step 5 of 18: Connect Port 1 and Port 2 to Secondary 2
29	Guided Calibration Step 6 of 18: Connect Port 1 and Port 2 to Secondary 1
30	Guided Calibration Step 7 of 18: Connect Port 1 to Load
31	Guided Calibration Step 8 of 18: Connect Port 2 to Load
32	Guided Calibration Step 9 of 18: Connect Port 3 to Short
33	Guided Calibration Step 10 of 18: Connect Port 4 to Short
34	Guided Calibration Step 11 of 18: Connect Port 3 to Port 4
35	Guided Calibration Step 12 of 18: Connect Port 3 and Port 4 to Secondary 3
36	Guided Calibration Step 13 of 18: Connect Port 3 and Port 4 to Secondary 2
37	Guided Calibration Step 14 of 18: Connect Port 3 and Port 4 to Secondary 1
38	Guided Calibration Step 15 of 18: Connect Port 3 to Load
39	Guided Calibration Step 16 of 18: Connect Port 4 to Load
40	Guided Calibration Step 17 of 18: Connect Port 1 Adapter Port 4
41	Guided Calibration Step 18 of 18: Connect Port 2 Adapter Port 3 : Quality check, adapter offset of Port 2 and Port 3 = Sec 3 delay +- 6 ps
42	Save the Calibration
43	Check the Calibration

Table C-4 TRL Calibration Steps 23 to 43 Using 2 Defined Throughs + 2 Unknown Throughs

C.5 Final TRL Calibration Steps Using 2 Defined Throughs + 4 Unknown Throughs

Final TRL calibration steps 23 to 45 and TRL calibration check using 2 defined throughs + 4 unknown
 throughs are shown in Table C-5.

5 6

Step	Description
23	Guided Calibration
24	Guided Calibration Step 1 of 20: Connect Port 1 to Short
25	Guided Calibration Step 2 of 20: Connect Port 2 to Short
26	Guided Calibration Step 3 of 20: Connect Port 1 to Port 2
27	Guided Calibration Step 4 of 20: Connect Port 1 and Port 2 to Secondary 3
28	Guided Calibration Step 5 of 20: Connect Port 1 and Port 2 to Secondary 2
29	Guided Calibration Step 6 of 20: Connect Port 1 and Port 2 to Secondary 1
30	Guided Calibration Step 7 of 20: Connect Port 1 to Load
31	Guided Calibration Step 8 of 20: Connect Port 2 to Load
32	Guided Calibration Step 9 of 20: Connect Port 3 to Short
33	Guided Calibration Step 10 of 20: Connect Port 4 to Short
34	Guided Calibration Step 11 of 20: Connect Port 3 to Port 4
35	Guided Calibration Step 12 of 20: Connect Port 3 and Port 4 to Secondary 3
36	Guided Calibration Step 13 of 20: Connect Port 3 and Port 4 to Secondary 2
37	Guided Calibration Step 14 of 20: Connect Port 3 and Port 4 to Secondary 1
38	Guided Calibration Step 15 of 20: Connect Port 3 to Load
39	Guided Calibration Step 16 of 20: Connect Port 4 to Load
40	Guided Calibration Step 17 of 20: Connect Port 1 Adapter Port 3
41	Guided Calibration Step 18 of 20: Connect Port 1 Adapter Port 4
42	Guided Calibration Step 19 of 20: Connect Port 2 Adapter Port 3 : Quality check, adapter offset of Port 2 and Port 3 = Sec 3 delay +- 6 ps
43	Guided Calibration Step 20 of 20: Connect Port 2 Adapter Port 4 : Quality check, adapter offset of Port 2 and Port 4 = Sec 3 delay +- 6 ps
44	Save the Calibration
45	Check the Calibration

Table C-5 Final TRL Calibration Steps Using 2 Defined Throughs + 4 Unknown Throughs

Appendix D Rise Time Measurement 1

D.1 TDR Head Connections 2

3 Connect the CH1 TDR head through a cable to the half primary through and the CH2 TDR head directly to 4

the half primary through.

5

(Note)

1. It is okay to switch CH1 and CH2. But for the consistency, we will keep this configuration in this document.

2. An adaptor can be used for the connection.

Figure D-1 TDR Head Connections

7 8

6

D.2 TDR Instrument Default Settings. 9

- 10 Set the TDR instrument to its default settings.
- 11

12 13

1 D.3 TDR Mode Setup.

2 Change the TDR Mode (Setup> Mode/ Trigger> TDR) and set the rate to 200 kHz.

Figure D-3 TDR Mode Setup Screenshot

5 6

4

7 D.4 Channel Definition

- 8 Define the channel.
- 9 a. Setup> TDR
- 10 b. Configure both the channels to have rising edge.
- 11 c. Configure the individual channels TDR step and acquisition as follows:
- 12 13
- => (

=> C1: TDR step= ON and ACQ= OFF => C2: TDR step= OFF and ACQ= ON

14 d. Change the units of both the channels to `voltage (V)'. 15

- 16 17
- 18

1 **D.5 View the Rising Edge**

- 2 Use the horizontal scale and position to be able to view the rising edge.
- 3

Figure D-5 TDR View of Rising Edge

6

7 **D.6 Rise Time Measurement Setup.**

- 8 Perform the following setup steps to enable making a rise time measurement.
- 9 a. Setup> Measurement.
- 10 b. Select Meas> Pulse- Timing> Rise Time.
- 11 c. Set Source1> C2 on Main.
- 12 d. Untick Use Wfm Database and click Clear'.
- 13 e. Select the signal type as Pulse.
- 14 f. Set the RefLevel to relative 80-20%.
- 15 g. Turn on statistics and annotations.
- 16 h. Turn on the measurement.
- 17

18 19

Figure D-6 Screenshot for Setup Steps a. and b.

Phone Ref Mark TOR Disp	Setups
Vert Horz Aca Mode/Trigger	Phase Ref Mask TDR Disp
Wim Database Hist Cursor Meas	Vert Horz Acq Mode/Trigger
(manual 1)	WINDERDER PEST COPER AND
Meas 1 • Con	Meas 1 • □ On
Select Meas Not Defined	Pulse Measurements
Value	Norse
Description [[[proceeder]]	Pulse - Ampétude
Show Stats Over Stats	Pulse - Timing • Rise Time
	Pulse - Area Fall Time
Source1 Source2 Set to Default	Source1 Source2 Set t Peniod
Source Region HiLow RefLevel	Source Region HiLow RefL + Cross
	- Cross
🖪 on Main 👻	😐 on Main 👻 🔹 Width
	- Width
and the second s	Duty Cycle Duty Cycle
U Ube Wim Database	Burst Width
Signal Type	Signal Type NR 7 R 7 D.4 RMS litter
	Pk-Pk litter
	Delay
	Phase
Statistics Weighting 32 1	El Statistics Weighting 32
P Annotations	C Annotations Help
нер	
Figure D-7 Screensh	ot for Setup Steps h and c
	ior for Secup Steps bi and Ci
	~

 Phase Ref
 Mask
 TDR
 Disp

 Wfm Database
 Hist
 Cursor
 Meas

Source1 Source2 Set to Default
Source Region HiLow RefLevel

RZ

Δ

Clear Stats

Clear

Pulse

r

32

Help

😋 on Main 👻

🔲 Use Wfm Database

Signal Type NRZ

XX

Statistics

Annotations

Show Stats

Value

1 2 3

Figure D-8 Screenshot for Setup Steps d. and e.

Weighting

etups				
Vert	Horz	Acq	Mo	de/Trigger
Phase Re	ef Ma	isk 1	DR	Disp
Wfm Dat	abase I	Hist	Cursor	Meas
Meas 1	•	E On		1
Select	Meas	C2 Rise		
Value				
	Show St	ats	Clear	Stats
Source	el S	ource2	Set to	Default
Refere Relation Refere Hi Mid	nce Level ative C Delta C 80.0%	Calc Meti Absolute Low Delt	AC	DP
 Statistic Annota 	rs tions	Weighting	32) Help

Figure D-9 Screenshot for Setup Step f.

Setups						×
Vert	Horz	2	Acq		Mod	e/Trigger
Phase R	ef 1	Mask	c	TDR		Disp
Wfm Da	tabase	Hi	st	Cu	rsor	Meas
Meas 1		•	₹ On			1
Selec	t Meas) (C2 Ris	e		
Value	38.6245	619	79059	7200)fs	
[Show	Stat	s		Clear S	Stats
Source	el 🛛	So	urce2	S	et to D	efault
Source	Regio	on	HiLow	R	efLeve	
or 🔽	n Main	•				
🖾 Use	Wfm D	atab	ase		Clear	
Sign	al Type		07		Dulas	
	XX XX		A		N	
- Charles		1				
💌 Statisti	cs	~~	eightir	ig	32	
Annota	ations				н	elp
8	_				_	

Figure D-10 Screenshot for Setup Steps g. and h.

1 **D.7 Rise Time Adjustments.**

2 D.7.1 Rise Time Adjustment Option 1

- 3 a. Setup> Vertical.
- 4 b. Select waveform> C1.
 - c. Check 'ON'.
 - d. Toggle between the different bandwidth options to set the right rise time.

8 D.7.2 Rise Time Adjustment Option 2.

- Another option to adjust the rise time is to use a software defined filter to slow the edge.
- 10 a. Edit> Define Math.
- 11 b. Math Expression: 'Filter(C2)'
- 12 c. Set the number of averages to 200.
- 13 d. Adjust the filter rise time value to reach the desired rise time by monitoring the M1 rise time measurement value.
- 15

5

6

7

Math Waveform M1 🔻 🗹 On		Math E Filter(C											
Functions				Sourc	es								
Intg(Diff(Vmag(Filter(C1	C2	C3	C4		+] -]	*][/	
Exp(Log(Sqrt(Ln(C5	C6	C7	C8		6	7	8	9	
Versus	Avg(Min(Max(R1	R2	R3	R4		2	З	4	5	
				R5	R6	R7	R8		1	0	•	Ee	
	() Num		Avgs 200		Measurement Scalars								
Backspace	Filter	Risetime 29.00ps		Me	as1	Meas2		Meas3		Meas4			
Clear	Filter	Filter Mode Ce		Me	Meas5		as6	Meas7		Mea	s8		
	ОК	A	vlag	Cance			He	lp	1				

