

SNIA Swordfish™ Hands-On Lab

Fall 2022 Edition

Richelle Ahlvers

 SNIA Swordfish

Hands-on Lab

 PAGE 2

This page intentionally left blank.

 SNIA Swordfish

Hands-on Lab

 PAGE 3

Abstract

In the SNIA Swordfish™ Hands-on Lab, Fall 2022 Edition, participants will get an

introduction to three different storage configurations, each instrumented in SNIA

Swordfish. The lab will allow the participants to see how each device is modeled,

interact with an emulated instance of each storage device type, and perform typical

configuration actions.

Details

Pre-work:
Prior to the lab, the participants will receive access information for the HOL session,

which includes a Zoom link, as well as VPN access information for the SNIA

Innovations Lab. The participants will be asked to confirm they can successfully

access the lab via VPN prior to the start of the lab session.

HOL Session:

For the HOL Session, the Participants will join a virtual Zoom session. During this

session:

Participants will be greeted by the HOL lead, who will describe the basic outline of the

activity and its goals, and then lead the participants through the following activities.

1. (5-10 minutes) The HOL lead will provide a short overview of SNIA Swordfish

objects that participants should look for, an overview of the three device

configurations used as part of the lab, and the tools available on the systems

for use.

2. (15 minutes) The first activity will be to navigate through the basic structure and

application of Swordfish to an NVMe “EBOF” – an "ethernet-attached bunch of

flash" enclosure and contained drives. The enclosure is an Ethernet front-end

attach configuration (has an embedded switch) with a set of ethernet-attached

drives inside. Each IP-attached drive has a complete Swordfish storage model –

Storage object, controller, volume, and drive, along with its network interface

modeled under the chassis. The connectivity is modeled under the

Fabric/Ethernet, and the access is modeled under Fabric/NVMeoF.

 SNIA Swordfish

Hands-on Lab

 PAGE 4

These devices do not support much configuration, other than in the networking

configuration and access; this activity is largely navigating to understand the

configuration and model.

3. (15 minutes) The next activity will be to navigate through the structure and

application of Swordfish to an external storage array which supports

replication. The participant will navigate around to understand the system.

After navigating around the system, the participant will find StoragePool1,

check the available capacity, and then generate a request to create a new

volume from this storage pool.

4. (15 minutes) The final activity will be to navigate through an external array

which has an NVMe front end. This system combines elements seen in the first

two activities – NVMe behaviors, as well as elements of external block storage

devices. After familiarizing themselves with the configuration, the participant

will perform an NVMe-specific action: configuring an additional host access to a

namespace (aka, a volume).

 SNIA Swordfish

Hands-on Lab

 PAGE 5

Configuration Overview

All the HOL exercises will use one, two, or three of the Swordfish service instances

running on a Windows VM instance.

Tools on Windows VM:

- PostMan – Rest client

- WSL (user “hol” password “hol”)

Each Swordfish service is an emulation of an actual Swordfish system management

interface. All emulated systems are configured with no authorization required.

System 1: An EBOF (Ethernet Bunch of Flash)

 Swordfish interface: http://localhost:4000/redfish/v1

System 2: An external storage array, configured with local replication.

 Swordfish interface: http://localhost:6000/redfish/v1

System 3: External storage array, with an NVMe front end; has NVMe/TCP

connectivity configured.

Swordfish interface: http://localhost:8000/redfish/v1

System Access

Connect via RDC to the system provided, using the IP address (“10.2.15.1” used in this

example):

http://localhost:4000/redfish/v1
http://localhost:6000/redfish/v1
http://localhost:8000/redfish/v1

 SNIA Swordfish

Hands-on Lab

 PAGE 6

Select “Use a Different Account”, and login with Administrator and the provided

password:

 SNIA Swordfish

Hands-on Lab

 PAGE 7

Accept the untrusted certificate notice to proceed (click yes).

Tools:

On the desktop you’ll see the “Postman” shortcut.

There’s also a link to the Ubuntu / WSL (Windows Subsystem for Linux) on the taskbar.

 SNIA Swordfish

Hands-on Lab

 PAGE 8

Getting Started:

1. Open a WSL (Ubuntu) window. (This will start the Swordfish service emulators

in the background).

2. Open a Postman window. There should be three “GET” links auto-populated

for you.

Try these out. These will take you to each of the three Swordfish “services” we will use

in this lab.

The services are differentiated by the port used to access them:

- Localhost:4000 == EBOF

- Localhost:6000 == external array

- Localhost:8000 == NVMe/TCP array

To access Redfish/Swordfish services, append “/redfish/v1” to the name or IP address

(plus port) of the system.

 SNIA Swordfish

Hands-on Lab

 PAGE 9

Exercise 1: Understanding

Swordfish in an EBOF

Purpose:

This exercise will familiarize the participant with the Swordfish model when applied to

an NVMe device. This includes many elements: logical storage models, physical

models, network configurations, access rights management, and connectivity

management. It also highlights the application of the Swordfish model to NVMe

devices.

Overview:

The following activities are covered in this exercise:

Navigate through the basic structure and application of Swordfish to an NVMe “EBOF”

– an "ethernet-attached bunch of flash" enclosure and contained drives. The enclosure

is an Ethernet front-end attach configuration (has an embedded switch) with a set of

ethernet-attached drives inside. Each IP-attached drive has a complete Swordfish

storage model – Storage object, controller, volume, and drive, along with its network

interface modeled under the chassis. The connectivity is modeled under the

Fabric/Ethernet, and the access is modeled under Fabric/NVMeoF.

• Identify the logical Storage components:

o Storage, Volume (namespace), controllers

• Identify networking components:

o Chassis/NetworkAdapters

o Fabric/Ethernet

▪ Switches

• Identify NVMe-specific components using common objects

o Logical controllers: Storage/Controllers

o Fabric/NVMeoF – NVMe access rights management

o NVMe Namespace – Storage/Volume

Getting Started:

Using Postman, go to the ServiceRoot of the EBOF Swordfish Service:

Select the REST command type in the drop-down box (GET), and type the URI in the

gray box. (localhost:4000/redfish/v1). Click “Send”

 SNIA Swordfish

Hands-on Lab

 PAGE 10

The view below shows the Body view in “Pretty” mode. Take a minute to check out

some of the other options. If you have questions about any of the other views, or

options, ask your instructor.

Note: you can also make the same query directly from a web browser and you will see

the same information returned. This is because REST is a web semantic.

 SNIA Swordfish

Hands-on Lab

 PAGE 11

Next Step: Navigating Through the Service

There are two ways to move through the model in Postman – you can click on a link

(double-click, or click and press “Send”), or type a value directly into the bar, as above.

Find the link to the Storage and navigate to it.

 SNIA Swordfish

Hands-on Lab

 PAGE 12

If you get stuck, you can always to the nav bar and reset to the service root

(/redfish/v1).

Identify the Components of the Storage Model

From the Storage collection, navigation into one of the Storage objects.

Once there, you can see the properties and additional sub-components of the storage

object.

Navigate through the tree, looking at the controllers and volumes. Note by both their

URI structures, as well as from their definitions, that these look like they are both

direct components of this objects.

 SNIA Swordfish

Hands-on Lab

 PAGE 13

The Drives ID, however, does not. It is a link to another place in the system.

There is also a links section, which points to related items.

Look at the Namespace (Volume)

Navigate to the Volume from this Storage object. Since this is an NVMe device, this has

many unique properties. These are largely contained in a unique section called

“NVMeNamespaceProperties”. NVMe unique behaviors are harder to see; these may

manifest in specific properties implemented, relationships to required objects, etc..

The best way to determine what should be implemented is to follow required profiles.

These are then advertised as Features so clients can tell what to expect. This device

should advertise itself as an “NVMe EBOF”.

 SNIA Swordfish

Hands-on Lab

 PAGE 14

Find the related Controllers

NVMe uses the notion of “controller” differently from traditional storage. These are

“logical” controllers that indicate things like connections of volumes (namespaces) to

hosts.

This particular namespace doesn’t show us its related controllers; that would be a

great enhancement request to this system.

Instead, to find the controller, go back up to the Storage entity, and find the controller.

(You can see the controller has the corresponding link to the namespace.)

 SNIA Swordfish

Hands-on Lab

 PAGE 15

Identify Networking Components:

Now, navigate back to the ServiceRoot, and look for the networking components.

Start in the Chassis.

In the EBOFEnclosure Chassis instance, you will see NetworkAdapters. Check these

out. Each network adapter includes NetworkDeviceFunctions and Ports.

Also, under each NetworkDeviceFunction, you will find additional definitions for

EthernetInterfaces:

 SNIA Swordfish

Hands-on Lab

 PAGE 16

That’s just the basic definition of the hardware interfaces on the chassis. Think of that

as the device’s view of its network.

However, when configuring any device to connect to a network, there are actually

three views: the system’s view, the target’s view, and the network’s view.

In this configuration, we have the target’s view, as well as a part of the network’s view:

the EBOF itself has an embedded switch.

This view is modeled as part of the Fabric hierarchy. Go to the service root, and look

at Fabrics:

 SNIA Swordfish

Hands-on Lab

 PAGE 17

There are two Fabrics instances listed here. This is a best practice in Swordfish; we

have separated out two different uses of the fabric model for clarity. The “Ethernet”

instance is used to manage connectivity, and that is where we will find the switch

object.

The NVMeoF instance is used to manage access rights.

 SNIA Swordfish

Hands-on Lab

 PAGE 18

The switch modeled here is the remaining piece of the physical representation of the

network components.

 SNIA Swordfish

Hands-on Lab

 PAGE 19

Connectivity is modeled in the rest of the fabric, using Endpoints and Zones.

Endpoints are logical abstractions of connectivity:

 SNIA Swordfish

Hands-on Lab

 PAGE 20

For each network device function, there is an endpoint.

And on the host, there is an endpoint to represent the network controller:

 SNIA Swordfish

Hands-on Lab

 PAGE 21

Connectivity between them, then, is represented in Zones:

 SNIA Swordfish

Hands-on Lab

 PAGE 22

Exercise 2: Create a new

Volume on a Disk Array

Purpose:

This exercise will familiarize the participant with the Swordfish model when applied to

an external block storage array. It will also introduce the participant to techniques

required for active configuration via the Swordfish interface.

Overview:

The following activities are covered in this exercise:

The participant will navigate around to understand the system. After navigating

around the system, the participant will find the StoragePools collection, identify a

Storage Pool, and POST a new Volume to its AllocatedVolumes collection.

(Disclaimer: the participant is working with the Swordfish emulator; no checking of

appropriate parameters for a storage pool is done at POST.)

Getting Started:

Using Postman, go to the ServiceRoot of the External Array Swordfish Service:

Select the REST command type in the drop-down box (GET), and type the URI in the

gray box. (localhost:6000/redfish/v1). Click “Send”

 SNIA Swordfish

Hands-on Lab

 PAGE 23

Note that this system does not include comprehensive Fabric / connectivity

information. For this exercise, we will focus on the logical / storage configuration.

Navigate to the Storage Model:

Find the link to the Storage and navigate to it.

If you get stuck, you can always to the nav bar and reset to the service root

(/redfish/v1).

Identify the Components of the Storage Model

From the Storage collection, navigation into the Storage device. You’ll notice this

device looks quite different from the EBOF configuration.

 SNIA Swordfish

Hands-on Lab

 PAGE 24

 SNIA Swordfish

Hands-on Lab

 PAGE 25

There are quite a few of the same properties, but some notable differences. The

system represents controllers differently (representing physical instead of logical

controllers).

Navigating around the system, you will see the traditional relationship between

StoragePools and Volumes.

 SNIA Swordfish

Hands-on Lab

 PAGE 26

There is one additional layer in the hierarchy, called CapacitySources, that supports

the use of multiple types of capacity to create a single pool. Pools can also be

hierarchical; you can have pools of pools; or pools of volumes; or, pools of drives.

Volumes are created from StoragePools. The “AllocatedVolumes” within a

StoragePool is the origin, or actual location, where the volume lives. The volume can

be referenced from many other places within the Swordfish hierarchy for convenience.

This includes a collection at the root of the Storage instance

(./Storage/{StorageId}/Volumes} where you can find links to all Volumes within a

storage instance.

Create a New Volume:

In order to identify the information we need to provide to create a new Volume, let’s

look at an existing one:

 SNIA Swordfish

Hands-on Lab

 PAGE 27

Here is the body for “Volume1” on StoragePool1. We’ll can use this text to reference

when we create our POST command.

 SNIA Swordfish

Hands-on Lab

 PAGE 28

Create POST command:

Let’s determine what properties we need in order to create our new volume.

Volume ID: What’s the ID for the new volume? We will use this for both the odata.id

and ID properties.

(NOTE – on a real system you may or may not be able to set this yourself. For the

emulator this doesn’t yet create it automatically, so we include it in the POST request

body.)

Capacity – set the AllocatedBytes in Capacity to a value at or below the capacity

remaining in your StoragePool. (note that the emulator won’t check this for you.)

Set “RAIDType” something supported by the StoragePool.

Do you want encryption enabled? Set “Encrypted” if supported by the StoragePool

There are more properties that can be set – dependent on the device you are working

with. But we’ll stop here for today.

{

 "@odata.id":

"/redfish/v1/Storage/MidrangeStorageSystem/StoragePools/Stora

gePool1/AllocatedVolumes/NEWVOLUME",

 "ID": "NEWVOLUME",

 "BlockSizeBytes": 512,

 "Capacity": {

 "Data": {

 "AllocatedBytes": 300067890136,

 "ConsumedBytes": 0

 }

 },

 "RAIDType": "RAID0"

}

 SNIA Swordfish

Hands-on Lab

 PAGE 29

POST Commands are submitted on the Collection.

What that means: Select POST as the REST command type, and then type the new

pool name (StoragePool3?) after the collection name on the nav bar. DON’T CLICK

SEND YET.

Under the nav bar area, select “body”, and “raw”

In this text area, paste in the new Volume object (see above) that you plan to use as a

template.

Now. Click SEND.

LARGE DISCLAIMER: Real systems will do all sorts of data checking, object creation,

etc for you.

 SNIA Swordfish

Hands-on Lab

 PAGE 30

Exercise 3: Remove a

Redundant Connection to a

Namespace

Purpose:

This exercise will familiarize the participant with the Swordfish model when applied to

an external block storage array which has an NVMe/TCP interface, combining

elements from the two previous exercises. After familiarizing themselves with the

configuration, the participant will perform an NVMe-specific action: removing a

redundant host access configuration to a namespace (aka, a volume).

Overview:

The following activities are covered in this exercise:

The participant will navigate around to understand the system. After navigating

around the system, the participant will find the StorageControllers collection and

delete a redundant IO Controller.

Getting Started:

Using Postman, go to the ServiceRoot of the NVMe/TCP array service:

Select the REST command type in the drop-down box (GET), and type the URI in the

gray box. (localhost:8000/redfish/v1). Click “Send”

 SNIA Swordfish

Hands-on Lab

 PAGE 31

Let’s navigate around this configuration and see what it looks like.

Learning the system configuration:

Let’s look at the physical configuration. Go to the Chassis and look around.

 SNIA Swordfish

Hands-on Lab

 PAGE 32

In the Chassis, we see a single enclosure, with a set of drives. As we look at these

drives, we notice something interesting…

 SNIA Swordfish

Hands-on Lab

 PAGE 33

These are SAS drives. As we look at more of this configuration, we’ll see that this array

has an NVMe front end, but a SAS back end. Swordfish supports this hybrid

configuration very easily, blending the traditional model with the NVMe model

seamlessly.

Continuing to check out the configuration, let’s go back to the ServiceRoot, and look at

the Fabrics configuration:

 SNIA Swordfish

Hands-on Lab

 PAGE 34

This looks familiar – we saw this same type of configuration with the EBOF system.

This must be, again, both a connectivity and access rights configuration. Let’s look

and confirm.

Looking at the Ethernet Fabric:

This system again has a similar configuration – the chassis has two switches built in for

connectivity.

Continuing to navigate around the Fabric model, you will see many similarities to the

modeling for the EBOF configuration.

 SNIA Swordfish

Hands-on Lab

 PAGE 35

Navigate through the Storage Hierarchy:

Find the link to the Storage in the ServiceRoot and navigate to it.

Find the storage instance.

Note that this device has both physical and logical controllers.

 SNIA Swordfish

Hands-on Lab

 PAGE 36

Navigate to Logical Controllers:

Go to the NVMe logical controllers collection.

Logical Controllers

Physical Controllers

 SNIA Swordfish

Hands-on Lab

 PAGE 37

Look at the details of the two NVMe IO Controllers.

 SNIA Swordfish

Hands-on Lab

 PAGE 38

and …

Since these are configured to provide the same paths, they are redundant. One can be

deleted.

Delete NVMeIOController2

Select “DELETE” as the REST command and put the URI to the object on the nav bar.

Click SEND.

Check the Controllers Collection to confirm.

