SFF-TA-1031
Specification for SFP2 Cage, Connector, & Module Specification

Points of Contact:
Dan Gorenc
TE Connectivity
2901 Fulling Mill Rd
Middletown, PA 17057
Email: dan.gorenc@te.com

Chairman SFF TA TWG
Email: SFF-Chair@snia.org

ABSTRACT: This specification defines the electrical and optical connectors, mechanical and thermal requirements of the pluggable SFP2 module. This document provides a common specification for systems manufacturers, system integrators, and suppliers of modules.

This specification provides a common reference for systems manufacturers, system integrators, and suppliers.

SECRETARIAT: SFF TA TWG
This specification is made available for public review at https://www.snia.org/sff/specifications. Comments may be submitted at http://www.snia.org/feedback. Comments received will be considered for inclusion in future revisions of this specification.

The description of the connector in this specification does not assure that the specific component is available from connector suppliers. If such a connector is supplied, it should comply with this specification to achieve interoperability between suppliers.

SFF-TA-1031 Rev 0.0.2
February 14, August 18, 2022

SFP2 Connector, Cage, and Module Specification

Copyright © 2022 SNIA. All rights reserved.
INTELLECTUAL PROPERTY

The user's attention is called to the possibility that implementation of this specification may require the use of an invention covered by patent rights. By distribution of this specification, no position is taken with respect to the validity of a claim or claims or of any patent rights in connection therewith.

This specification is considered SNIA Architecture and is covered by the SNIA IP Policy and as a result goes through a request for disclosure when it is published. Additional information can be found at the following locations:

- Results of IP Disclosures: https://www.snia.org/sffdisclosures
- SNIA IP Policy: https://www.snia.org/ippolicy

COPYRIGHT

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing copyright_request@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA's receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to https://www.snia.org/feedback/.
FOREWORD

The development work on this specification was done by the SFP2 MSA and given to the SFF TA TWG, a SNIA Technical Affiliate Technical Working Group, for continued development. Since its formation as the SFF Committee in August 1990, the membership has included a mix of companies which are leaders across the industry.

For those who wish to participate in the activities of the SFF TA TWG, the signup for membership can be found at https://www.snia.org/sff/join.

REVISION HISTORY

Rev 0.0.1 February 11, 2022:
- Initial Draft

Rev 0.0.2 August 18, 2022
- Changed Unmating force from 12.5N Max to 30N max
- Replaced Figure 5-2 with new figure showing 1.2 max for width of locating peg.
CONTENTS

1. Scope 6
2. References and Conventions 6
   2.1 Industry Documents 6
   2.2 Sources 6
   2.3 Conventions 8
3. Keywords, Acronyms, and Definitions 9
   3.1 Keywords 9
   3.2 Acronyms and Abbreviations 9
   3.3 Definitions 10
4. General Description 13
   4.1 Configuration Overview/Descriptions 13
   4.1.1 Connector Configuration 13
   4.2 Contact Numbering 13
5. Connector Mechanical Specification 14
   5.1 Overview 14
   5.1.1 Datums 14
   5.2 SFP2 Cage, Connector, Module Alignment 15
   5.2.1 SFP2 SMT Electrical Connector 17
   5.2.2 SFP2 SMT Host PCB Layout 20
6. Cage Mechanical Specification 23
   6.1 Overview 23
   6.1.1 Optional Cage Heat Sink Opening 24
7. Module Mechanical Specification 24
   7.1 Overview 24
   7.2 Module 25
   7.3 Module Flatness and Roughness 27
   7.4 SFP2 Improved Module Paddle Card Dimensions 27
   7.5 SFP2 Module Extraction and Retention Forces 28
8. Environmental and Thermal 28
   8.1 Thermal Requirements 28
9. Normative Module and Connector Performance Requirements 29
   9.1 Performance Tables 29
1. Scope

This specification defines the SFP2 module, cage and connector system. SFP2 supports 112 Gb/s over single electrical lane. The cage and connector design provides backwards compatibility to SFP+/SFP28. SFP2 cage and connectors are compatible with SFP+/SFP28 modules.

2. References and Conventions

2.1 Industry Documents

The following documents are relevant to this specification:

- SFP-DD/SFP-DD112/SFP112 Hardware Specification for SFP112 AND SFP Double Density Pluggable Transceiver
- ASME Y14.5 Dimensioning and Tolerancing
- EIA-364-1000 Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets Used in Controlled Environment Applications
- EN61000-4-2 IEC immunity standard on ESD, criterion B test specification
- IEEE Std 802.3TM-2018 annex 86A, 83E, and 120E
- IEEE Std 802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet, clause 136 and annex 136A
- INF-8074 SFP (Small Formfactor Pluggable) Transceiver, Rev. 1.0
- JEDEC JESD8C.01 Interface standard for Nominal 3.0/3.3 V Supply Digital Integrated Circuit (LVCMOS)
- NEBS GR-63 Physical Protection Requirements for Network Telecommunications Equipment
- REF-TA-1011 Cross Reference to Select SFF Connectors
- SFF-8071 SFP+ 1x 0.8 mm Card Edge Connector, Rev. 1.1
- SFF-8402 SFP+ 1x 28 Gb/s Pluggable Transceiver Solution (SFP28), Rev. 1.1
- SFF-8419 SFP+ Power and Low Speed Interface, Rev. 1.3
- SFF-8431 SFP+10 Gb/s and Low Speed Electrical Interface, Rev. 4.1
- SFF-8432 SFP+ Module and Cage, Rev. 5.2a
- SFF-8433 SFP+ Ganged Cage Footprints and Bezel Openings, Rev. 0.7
- SFF-8472 Diagnostic Monitoring Interface for Optical Transceivers, Rev. 12.4

2.2 Sources

The complete list of SFF documents which have been published, are currently being worked on, or that have been expired by the SFF Committee can be found at https://www.snia.org/sff/specifications. Suggestions for improvement of this specification will be welcome, they should be submitted to https://www.snia.org/feedback.

Other standards may be obtained from the organizations listed below:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers (ASME)</td>
<td><a href="https://www.asme.org">https://www.asme.org</a></td>
</tr>
<tr>
<td>Electronic Industry Alliance (EIA)</td>
<td>Electronic Components Industry Association (ECIA)</td>
<td><a href="https://www.ecianow.org">https://www.ecianow.org</a></td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
<td><a href="https://www.ieee.org">https://www.ieee.org</a></td>
</tr>
<tr>
<td>InfiniBand</td>
<td>InfiniBand Trade Association (IBTA)</td>
<td><a href="http://www.infinibandta.org">http://www.infinibandta.org</a></td>
</tr>
<tr>
<td>JEDEC</td>
<td>JEDEC Solid State Technology Association</td>
<td><a href="https://www.jedec.org">https://www.jedec.org</a></td>
</tr>
<tr>
<td>OIF</td>
<td>Optical Internetworking Forum (OIF)</td>
<td><a href="http://www.oiforum.com">http://www.oiforum.com</a></td>
</tr>
<tr>
<td>SAS and other ANSI standards</td>
<td>International Committee for Information Technology Standards (INCITS)</td>
<td><a href="http://www.incits.org">http://www.incits.org</a></td>
</tr>
</tbody>
</table>

SFP2 Connector, Cage, and Module Specification
2.3 Conventions

The following conventions are used throughout this document:

DEFINITIONS

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

LISTS

Lists sequenced by lowercase or uppercase letters show no ordering relationship between the listed items.

EXAMPLE 1 - The following list shows no relationship between the named items:

- red (i.e., one of the following colors):
  - A. crimson; or
  - B. pink;
- blue; or
- green.

Lists sequenced by numbers show an ordering relationship between the listed items.

EXAMPLE 2 - The following list shows an ordered relationship between the named items:

1. top;
2. middle; and
3. bottom.

Lists are associated with an introductory paragraph or phrase and are numbered relative to that paragraph or phrase (i.e., all lists begin with an a. or 1. entry).

DIMENSIONING CONVENTIONS

The dimensioning conventions are described in ASME-Y14.5, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

NUMBERING CONVENTIONS

The ISO convention of numbering is used (i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point). This is equivalent to the English/American convention of a comma and a period.

<table>
<thead>
<tr>
<th>American</th>
<th>French</th>
<th>ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>1,000</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>1,323,462.9</td>
<td>1 323 462,9</td>
<td>1 323 462.9</td>
</tr>
</tbody>
</table>
3. Keywords, Acronyms, and Definitions

For the purposes of this document, the following keywords, acronyms, and definitions apply.

3.1 Keywords

May: Indicates flexibility of choice with no implied preference.

May or may not: Indicates flexibility of choice with no implied preference.

Obsolete: Indicates that an item was defined in prior specifications but has been removed from this specification.

Optional: Describes features which are not required by the SFF specification. However, if any feature defined by the SFF specification is implemented, it shall be done in the same way as defined by the specification. Describing a feature as optional in the text is done to assist the reader.

Shall: Indicates a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: Indicates flexibility of choice with a strongly preferred alternative.

3.2 Acronyms and Abbreviations

AOC: Active Optical Cable
EMLB: Early Mate Late Break
IDC: Insulation Displacement Contact
IDT: Insulation Displacement Termination
PCB: Printed Circuit Board
PF: Press Fit
PTH: Plated Through Hole
RA: Right Angle
SMT: Surface Mount Technology
3.3 Definitions

Alignment guides: A term used to describe features that pre-align the two halves of a connector interface before electrical contact is established. Other common terms include: guide pins, guideposts, blind mating features, mating features, alignment features, and mating guides.

Basic (dimension): The theoretical exact size, profile, orientation, or location of a feature. It is used as the basis from which permissible variations are established by tolerances in notes or in feature control frames (GD&T).

Connector: Each half of an interface that, when joined together, establish electrical contact and mechanical retention between two components. In this specification, the term connector does not apply to any specific gender; it is used to describe the receptacle, the plug or the card edge, or the union of receptacle to plug or card edge. Other common terms include: connector interface, mating interface, and separable interface.

Contact mating sequence: A term used to describe the order of electrical contact established/un-established during mating/un-mating. Other terms include: contact sequencing, contact positioning, mate first/break last, EMLB (early mate late break) staggered contacts, and long pin/short pin.

Contacts: A term used to describe connector terminals that make electrical connections across a separable interface.

Datum: A point, line, plane, etc., assumed to be exact for the purposes of computation or reference, as established from actual features, and from which the location or geometric relationship of either feature is established.

Module: In this specification, module may refer to a plug assembly at the end of a copper (electrical) cable (passive or active), an active optical cable assembly, an optical transceiver, or a loopback.

Plug: A term used to describe the connector that contains the penetrating contacts of the connector interface as shown in Figure 3-1. Plugs typically contain stationary contacts. Other common terms include male, pin connector, and card edge.

Receptacle: A term used to describe the connector that contains the contacts that accept the plug contacts as shown in Figure 3-1. Receptacles typically contain spring contacts. Other common terms include female and socket connector.

Plated through hole termination: A term used to describe a termination style in which rigid pins extend into or through the PCB. Pins are soldered to keep the connector or cage in place. Other common terms are through hole or PTH.

Press fit: A term used to describe a termination style in which collapsible pins penetrate the surface of a PCB. Upon insertion, the pins collapse to fit inside the PCB's plated through holes. The connector or cage is held in place by the interference fit between the collapsed pins and the PCB.

Reference (dimension): A dimension provided for information or convenience. It has no tolerance and is not to be used for inspection or conformance. It can be calculated from other tolerance dimensions or can be found.
elsewhere on the drawing with a tolerance. If removed, it would have no impact on the defined object or the ability or reproduce it.

Right Angle: A term used to describe either a connector design where the mating direction is parallel to the plane of the printed circuit board upon which the connector is mounted or a cable assembly design where the mating direction is perpendicular to the bulk cable.

Right Angle:

A term used to describe either a connector design where the mating direction is parallel to the plane of the printed circuit board upon which the connector is mounted or a cable assembly design where the mating direction is perpendicular to the bulk cable.

Straight:

A term used to describe a connector design where the mating direction is parallel to the bulk cable.

Surface mount:

A term used to describe a termination style in which solder tails sit on pads on the surface of a PCB and are then soldered to keep the connector or cage in place. Other common terms are surface mount technology or SMT.

Termination:

A term used to describe a connector’s non-separable attachment point such as a connector contact to a bulk cable/ a cage to a PCB or flex circuit/ bulk cable to a PCB or flex circuit/ solder tail to PCB. Common PCB terminations include: surface mount (SMT), plated through hole termination (PTH), and press fit (PF). Common cable terminations include insulation displacement contact (IDC), insulation displacement termination (IDT), wire slots, solder, welds, crimps, and brazes.

Vertical:

A term used to describe a connector design where the mating direction is perpendicular to the printed circuit board upon which the connector is mounted.

Figure 3-2 Right Angle Connector and Cable Assembly

PCB plane

Direction of mating

Direction of mating

a) Right angle connector

b) Right angle cable assembly
**Wipe:** The distance a contact travels on the surface of its mating contact during the mating cycle as shown in Figure 3-3.

![Figure 3-3 Wipe for a Continuous Contact](image-url)
4. General Description

4.1 Configuration Overview/Descriptions

The SFP2 form factor system consisting of a transceiver module, cage and connector optimized for higher speed applications. The cage and connectors are backward compatible with SFP+/SFP28.

In addition to contacts for the high-speed data signals, the connector provides contacts for module and channel control and status signals including a pair that form a Two-Wire Interface (TWI) or communication with the module's memory.

SFP2 management specifications is based on common management specifications CMIS.

4.1.1 Connector Configuration

Application overview of the mating transceiver and host connector.

4.2 Contact Numbering

The pins or electrical contacts numbering in this connector can be found in the drawings in Section 5, The Connector Mechanical Specification.
5. Connectors Mechanical Specification

5.1 Overview

SFP2 module mechanical specifications are compatible with SFP+/SFP28 module mechanical specifications. Below is the list of relevant SFP+/SFP28 sections applicable to SFP2:

- IPF General descriptions, Chapter 3.0
- IPF Modules Dimensions, Retention/Extraction, and Durability, Chapter 4
- IPF Cage Requirements, Chapter 5
- SFP Single Cage Host Board Mechanical Layout, Chapter 4A
- SFP+ Ganged Cage Host Board Mechanical Layout, Chapter 4
- SFP-DD/SFP-DD112/SFP2 Module Extraction and Retention Forces, 7.52
- SFP-DD/SFP-DD112/SFP2 Module Flatness and Roughness, 7.55
- SFP-DD/SFP-DD112/SFP2 Module Extraction and Retention Forces, 7.57

The module paddle card dimensions of the SFP2 have been improved to support 100 Gb/s PAM4 (up to 56 GBd) serial data rates compared to SFP+/SFP.

SFP2 supports multiple connector/cage form factors. All combinations of cages/connectors defined in the specification are backwards compatible to accept classic SFP28 and SFP+ modules. In addition, SFP2 modules are compatible with SFP28/SFP+ hosts for operation at lower speed.

5.1.1 Datums

The datums defined in Table 5-1 are used throughout the rest of the document to describe the dimensional requirements of this connector.

Table 5-1 Datum Descriptions

<table>
<thead>
<tr>
<th>Datum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Center line of connector slot</td>
</tr>
<tr>
<td>B</td>
<td>Bottom surface of connector</td>
</tr>
<tr>
<td>C</td>
<td>Round guidepost of connector</td>
</tr>
<tr>
<td>D</td>
<td>Leading edge of signal contact pads on module paddle card</td>
</tr>
<tr>
<td>E</td>
<td>Leading edge of low-speed contact pads on module paddle card</td>
</tr>
<tr>
<td>F</td>
<td>Front edge of module paddle card</td>
</tr>
<tr>
<td>G</td>
<td>Top surface of module paddle card</td>
</tr>
<tr>
<td>H</td>
<td>Center line of module paddle card width</td>
</tr>
<tr>
<td>K</td>
<td>Host board thru hole #1 to accept connector guidepost</td>
</tr>
<tr>
<td>L</td>
<td>Host board thru hole #2 to accept connector guidepost</td>
</tr>
<tr>
<td>M</td>
<td>Vertical center line of Datum L and Datum K</td>
</tr>
<tr>
<td>N</td>
<td>Top surface of host board</td>
</tr>
<tr>
<td>P</td>
<td>Hard stop on module</td>
</tr>
<tr>
<td>R</td>
<td>Hard stop on cage</td>
</tr>
<tr>
<td>S</td>
<td>Host board thru hole to accept primary cage press fit pin</td>
</tr>
<tr>
<td>T</td>
<td>Center line of module width</td>
</tr>
<tr>
<td>U</td>
<td>Bottom surface of module</td>
</tr>
</tbody>
</table>
5.2 SFP2 Cage, Connector, Module Alignment

The alignment of the cage, connector and module are shown in Figure 5-1.
Figure 5-1 SFP2 1x1 Cage and Host PCB Layout
5.2.1 SFP2 SMT Electrical Connector

The SFP2 Connector is a 20-contact improved right-angle connector compatible with SFP+ modules. The SFP2 SMT connector is shown in Figure 5-2.
Figure 5-2 SFP2 SMT Connector
5.2.2 SFP2 SMT Host PCB Layout

A typical host board mechanical layout for attaching the SFP2 surface mount Connector is shown in Figure 5-3 SFP2 Host Pad Layout. The detailed optimized SFP2 host pad layout is shown in Figure 5-3 SFP2 Host Pad Layout and the host PCB pad numbers shown in Figure 5-5.

Note: the cage footprint for SFP2 is the same as SFP cage footprint see SFF-8074i, SFP (Small Formfactor Pluggable) Transceiver, Rev. 1.0, see Figure 4A.

To achieve 112 Gbps (56 GBd) operation the SFP2 pad dimensions and associated tolerances have improved compared to SFP+/SFP28 as shown in Figure 5-4. One must adhere and pay attention to the host board layout for 56 GBd operation.
Figure 5-3 SFP2 Host Pad Layout
Figure 5-4 SFP2 Detailed Host Pad Layout
6. Cage Mechanical Specification

6.1 Overview

The SFP2 Cage is backward compatible with and mechanically identical to the SFP+ and SFP28 cages. The cage dimensions and details are available in those documents. However, in some instances there may be a need for additional thermal management considerations. If there is a need for heat sinks, the cage heat sink openings are defined in the following section.
6.1.1 Optional Cage Heat Sink Opening

![Figure 6-1 Cage Heat Sink Opening](image)

7. Module Mechanical Specification

7.1 Overview

SFP2 modules mechanical dimensions are identical to SFP+/SFP28 modules with exception of viewing windows to inspect high-speed pads as shown Figure 7-1. A SFP28/56 cage can be used with the SFP2 connector. For SFP2 modules, the bottom surface of the module within the cage shall be flat without a pocket. The options for the position and the bottom view of the label could include the bottom surface of the module that protrudes outside the bezel of the cage or etched into the metal surface. Caution should be exercised that any etchings do not affect thermal performance.

Flatness and roughness specs to both top and bottom surfaces of SFP2 modules are defined in Section 3. Keywords, Acronyms, and Definitions.
7.2 Module

NOTES APPLY TO MODULE DRAWINGS:
1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5–2009.
2. SHARP CORNERS AND EDGES ARE NOT ALLOWED. ROUND OFF ALL EDGES AND CORNERS.
3. RECOMMENDED MAXIMUM MODULE LENGTH EXTENDING OUTSIDE OF CASE. OTHER LENGTHS ARE APPLICATION SPECIFIC.
4. INDICATED OUTLINE DEFINES MAXIMUM ENVELOP OUTSIDE THE CASE.
   THE SURFACES OF THE MAXIMUM ENVELOPE MAY BE CONTACTED BY AN ADJACENT MODULE EMI SPRINGS DURING INSERTION AND EXTRACTION OF THE MODULE FROM THE CASE. THE SURFACES SHALL NOT HAVE ANY SHARP OR MATERIALLS THAT CAN DAMAGE THE ADJACENT MODULE EMI SPRINGS OR BE DAMAGED THEMSELVES BY THE SPRINGS.
5. DIMENSIONS DEFINES EMI SPRING CONTACT POINT WITH MODULE CASE.
6. FLATNESS SPECIFICATION APPLIES OVER THE ENTIRE HEAT SINK AREA. REFER TO SECTION 5.4 TABLE 6 FOR FLATNESS REQUIREMENTS.
7. PRODUCT LABEL ON BOTTOM AND/OR SIDES TO BE FLUSHED OR DEEPED BELOW EXTERNAL SURFACES. LABEL(S) SHALL NOT INTERFERENCE WITH THE MECHANICAL, THERMAL, OR EMC PROPERTIES.
Figure 7-1 SFP2 High Speed Pads Viewing Windows
7.3 Module Flatness and Roughness

Module flatness and roughness are specified to improve module thermal characteristics when used with a riding heat sink. Relaxed specifications are used for lower power modules to reduce cost. The module flatness and roughness specifications apply to the specified heat sink contact area as specified in Figure 7-1. Specifications for module flatness and surface roughness are shown in Table 7-1.

<table>
<thead>
<tr>
<th>Power Class</th>
<th>Module Flatness (mm)</th>
<th>Surface Roughness (Ra, µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.075</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>0.075</td>
<td>1.6</td>
</tr>
<tr>
<td>3</td>
<td>0.075</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>0.075</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>0.050</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>reserved</td>
<td>reserved</td>
</tr>
<tr>
<td>7</td>
<td>reserved</td>
<td>reserved</td>
</tr>
<tr>
<td>8</td>
<td>0.050</td>
<td>0.8</td>
</tr>
</tbody>
</table>

7.4 SFP2 Improved Module Paddle Card Dimensions

The SFP2 module paddle card pad dimensions have been modified to support 112 Gb/s (56 GBd) serial data rates which includes the addition of pre-wipe pads. SFP2 module paddle card pad dimensions optimized for 56 GBd operation shown in Figure 7-2. All other module dimensions, except for the pads are the same as the SFP+/SFP28 specifications.

Notes for Figure 7-2:
- **Contact Pad Plating**
  - 0.38 Micrometers Minimum Gold over 1.27 Micrometers Minimum Nickel
- **Alternate Contact Pad Plating**
  - 0.05 Micrometers Minimum Palladium over 0.30 Micrometers Minimum Palladium over 1.27 Micrometers Minimum Nickel
- Components keep out area measured from Datum F
- No solder mask within 0.05mm of all defined Contact pad edges
- No solder mask between end contacts and card edge
- Dimensions and positions apply for all pre-wipe and power pads
- Dimensions and positions apply for all ground and signal pads

Commented [GD1]: Alternate Plating: cannot put that Pd on practically. Leave it in as it has been on many documents in the past. If testing shows a better plating, change it then. The one being looked at is IPC-4556: 0.03 Au, 0.05 Pd, 3.0 Ni
7.5 SFP2 Module Extraction and Retention Forces

The requirements for insertion forces, extraction forces and retention forces are specified. The SFP2 cage and modules are designed to ensure that excessive force applied to a cable does not damage the SFP2 cage or host connector. If any part is damaged by excessive force, it should be the cable or media module and not the cage or host connector which is part of the host system. Examples of module retention mechanisms are found in SFF-8432 Figures 4-4 through 4-7. The contact pad plating shall meet the requirements in Section 7.4.

8. Environmental and Thermal

8.1 Thermal Requirements

The SFP2 module shall operate within one or more of the case temperatures ranges defined in Table 8-1. The temperature ranges are applicable between 60 m below sea level and 1800 m above sea level, NEBS GR-63, utilizing...
the host systems designed airflow.

### Table 8-1 Temperature Range Class of Operation

<table>
<thead>
<tr>
<th>Class</th>
<th>Case Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0°C through 70°C</td>
</tr>
<tr>
<td>Extended</td>
<td>-5°C through 85°C</td>
</tr>
<tr>
<td>Industrial</td>
<td>-40°C through 85°C</td>
</tr>
</tbody>
</table>

SFP2 are designed to allow for up to 48 modules; stacked, ganged and/or belly-to-belly in a 1U 19” rack, with the appropriate thermal design for cooling/airflow.

### 9. Normative Module and Connector Performance Requirements

#### 9.1 Performance Tables

EIA-364-1000 (TS-1000) shall be used to define the test sequences and procedures for evaluating the connector system described in this document. Where multiple test options are available, the manufacturer shall select the appropriate option where not previously specified. The selected procedure should be noted when reporting data. If there are conflicting requirements or test procedures between EIA-364 procedures and those contained within this document, this document shall be considered the prevailing authority.

Unless otherwise specified, procedures for sample size, data, and collection to be followed as specified in EIA-364-1000. See EIA-364-1000 Annex B for objectives of tests and test groups.
Table 9-1 summarizes the performance criteria that are to be satisfied by the connector described in this document. Most performance criteria are validated by EIA-364-1000 testing, but this test suite leaves some test details to be determined. To ensure that testing is repeatable, these details are identified in Table 9-2. Finally, testing procedures used to validate any performance criteria not included in EIA-364-1000 are provided in Table 9-3.

<table>
<thead>
<tr>
<th>Performance Parameters</th>
<th>Description/Details</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical/Physical Tests</td>
<td>Plating Type</td>
<td>Plating type on connector contacts</td>
</tr>
<tr>
<td></td>
<td>Surface Treatment</td>
<td>Surface treatment on connector contacts; if surface treatment is applied, Test Group 6 is required</td>
</tr>
<tr>
<td></td>
<td>Wipe length</td>
<td>Designed distance a contact traverses over a mating contact surface during mating and resting at a final position. If less than 0.127 mm, test group 6 is required</td>
</tr>
<tr>
<td></td>
<td>Rated Durability Cycles</td>
<td>The expected number of durability cycles a component is expected to encounter over the course of its life</td>
</tr>
<tr>
<td></td>
<td>Mating Force¹</td>
<td>Amount of force needed to mate a module with a connector when latches are deactivated</td>
</tr>
<tr>
<td></td>
<td>Unmating Force¹</td>
<td>Amount of force needed to separate a module from a connector when latches are deactivated</td>
</tr>
<tr>
<td></td>
<td>Latch Retention¹</td>
<td>Amount of force the latching mechanism can withstand without unmating</td>
</tr>
<tr>
<td></td>
<td>Cage Latch Strength¹</td>
<td>The amount of force that the cage latches can hold without being damaged</td>
</tr>
<tr>
<td></td>
<td>Cage Retention to Host Board¹</td>
<td>Amount of force a cage can withstand without separating from the host board</td>
</tr>
<tr>
<td>Environmental Requirements</td>
<td>Field Life</td>
<td>The expected service life for a component</td>
</tr>
<tr>
<td></td>
<td>Field Temperature</td>
<td>The expected service temperature for a component</td>
</tr>
<tr>
<td>Electrical Requirements</td>
<td>Current</td>
<td>Maximum current to which a contact is exposed in use</td>
</tr>
<tr>
<td></td>
<td>Operating Voltage</td>
<td>Maximum voltage to which a contact is exposed in use</td>
</tr>
</tbody>
</table>

Note:
1. These performance criteria are not validated by EIA-364-1000 testing, see Table 9-3 for test procedures and pass/fail criteria.
Table 9-2 describes the details necessary to perform the tests described in the EIA-364-1000 test sequences. Testing shall be done in accordance with EIA-364-1000 and the test procedures it identifies in such a way that the parameters/requirements defined in

Table 9-1 and Table 9-4 are met. Any information in this table supersedes EIA-364-1000.

**Table 9-2 EIA-364-1000 Test Details**

<table>
<thead>
<tr>
<th>Performance Parameters</th>
<th>Description/Details</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mechanical/Physical Tests</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durability (preconditioning)</td>
<td>EIA-364-09</td>
<td>No evidence of physical damage</td>
</tr>
<tr>
<td></td>
<td>To be tested with connector, cage, and module. Latches may be locked out to aid in automated cycling.</td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td>EIA-364-09</td>
<td>No visual damage to mating interface or latching mechanism</td>
</tr>
<tr>
<td></td>
<td>To be tested with connector, cage, and module. Latches may be locked out to aid in automated cycling.</td>
<td></td>
</tr>
<tr>
<td><strong>Environmental Tests</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic Temperature and Humidity</td>
<td>EIA-364-31 Method IV omitting step 7a Test Duration B</td>
<td>No intermediate test criteria</td>
</tr>
<tr>
<td>Vibration</td>
<td>EIA-364-28 Test Condition V Test Condition Letter D Test set-up: Connectors may be restrained by a plate that replicates the system panel opening as defined in this specification. External cables may be constrained to a non-vibrating fixture a minimum of 8 inches from the module. For cabled connector solutions: Wires may be attached to PCB or fixed to a non-vibrating fixture.</td>
<td>No evidence of physical damage -AND- No discontinuities longer than 1 μs allowed</td>
</tr>
<tr>
<td>Mixed Flowing Gas</td>
<td>EIA-364-85 Class II See Table 4.1 in EIA-364-1000 for exposure times Test option Per EIA-364-1000 option 3</td>
<td>No intermediate test criteria</td>
</tr>
<tr>
<td><strong>Electrical Tests</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Level Contact Resistance</td>
<td>EIA-364-23 20 mV DC Max, 100 mA Max To include wire termination or connector-to-board termination</td>
<td>20 mOhm Max change from baseline</td>
</tr>
<tr>
<td>Dielectric Withstanding Voltage</td>
<td>EIA-364-20 Method B 300 VDC minimum for 1 minute Applied voltage may be product / application specific</td>
<td>No defect or breakdown between adjacent contacts -AND- 1 mA Max Leakage Current</td>
</tr>
</tbody>
</table>

**Notes:**
1. If the durability requirement on the connector is greater than that of the module, modules may be replaced after their specified durability rating.
2. The first low level contact resistance reading in each test sequence is used to determine a baseline measurement. Subsequent measurements in each sequence are measured against this baseline.
Table 9-3 describes the testing procedures necessary to validate performance criteria not validated by EIA-364-1000 testing. The tests are to be performed in such a way that the parameters/requirements defined in Table 9-1 are met.

### Table 9-3 Additional Test Procedures

<table>
<thead>
<tr>
<th>Tests</th>
<th>Test Descriptions and Details</th>
<th>Pass/ Fail Criteria's</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mechanical/ Physical Tests</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mating Force¹</td>
<td>EIA-364-13</td>
<td>Refer to Table 9-1 Form Factor Performance Requirements</td>
</tr>
<tr>
<td>Unmating Force¹</td>
<td>Mating/ unmating rate 12.7 mm/min</td>
<td>Latching mechanism deactivated (locked out).</td>
</tr>
<tr>
<td>Latching mechanism deactivated (locked out).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latch Retention¹</td>
<td>EIA-364-13</td>
<td>Table 9-1 Form Factor Performance Requirements</td>
</tr>
<tr>
<td>Mating/ unmating rate 12.7 mm/min</td>
<td>To be tested with cage, connector, and module. Latching mechanism engaged (not locked out).</td>
<td></td>
</tr>
<tr>
<td>Latching mechanism engaged (not locked out).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latch Strength</td>
<td>An axial load applied using a static load or ramped loading to the specified load.</td>
<td></td>
</tr>
<tr>
<td>Contacts energized: All signal and power contacts energized simultaneously</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No physical damage to any components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cage Retention to Host Board</td>
<td>Tested with module, module analog, or fixtures mated to cage. Pull cage in a direction perpendicular to the board at a rate of 25.4 mm/min to the specified force.</td>
<td></td>
</tr>
<tr>
<td>No physical damage to any components -AND- Cage shall not separate from board</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Electrical Tests             |                               |                       |
| Current                     | EIA-364-70 Method 3, 30-degree temperature rise |
| Contacts energized: All signal and power contacts energized simultaneously |
| Refer to Table 9-1 Form Factor Performance Requirements |

Note: Values listed in Table 9-1 Form Factor Performance Requirements

1. Table 9-1 Form Factor Performance Requirements apply with or without the presence of a riding heat sink.