SDXI Technical Workgroup Charter

SUBMITTER: SDXI TWG
DATE SUBMITTED: June, 2021
VERSION: 2.0
v1.0 APPROVED by Technical Council: 6/22/2020
v2.0 APPROVED by Technical Council: 6/21/2021

CHARTER:
SDXI is a proposed standard for a memory to memory Data Mover interface. Software memcpyp is the current data movement standard for software implementation due to stable CPU ISA. However, this takes away from application performance and incurs software overhead to provide context isolation. Offload DMA engines and their interface are vendor-specific and not standardized for user-level software.

- Software uses stable CPU ISA for memory copies
 - Takes away from application performance
 - Software overhead to provide context isolation
- Fast DMA offload engines are available
 - They are vendor-specific
 - Direct access by user level software is difficult

Fig.1 Current Data movement standard

The SDXI TWG -
- Develops and standardizes an extensible, forward-compatible memory to memory data mover interface that is independent of actual data mover implementations and underlying
I/O interconnect technology. A PCIe device model is described. The interface can be extended to other device models.

- Proposed standard supports:
 - data movement between different address spaces including user address spaces located within different virtual machines
 - data movement without mediation by privileged software once a connection has been established.
 - an interface and architecture that can be abstracted or virtualized by privileged software to allow greater compatibility of workloads or virtual machines across different servers.
 - a well-defined capability to quiesce, suspend, and resume the architectural state of a per-address-space data mover to allow “live” workload or virtual machine migration between servers.
 - mechanisms to enable forwards and backwards compatibility across future specification revisions. Allows software and hardware designed to different specification revisions to interoperate.
 - ability to incorporate additional offloads in the future leveraging the architectural interface.
 - concurrent DMA model.
 - coordinates the submission of new feature proposals to standards groups like PCISIG, CXL, OFA, UEFI, Gen-Z etc.

As new memory technologies get adopted and memory fabrics expand the use of tiered memory, data mover acceleration and its uses will increase. This TWG will encourage adoption and extensions to this data mover interface.

This TWG will assist and cooperate with other SNIA TWGs such as the Persistent Memory work group and Computational Storage work group to leverage data mover technology. This TWG will also consider other SNIA TWG and Alliance partner work for leveraging.

This TWG intends to develop SNIA Architecture and SNIA Software. This TWG, or a new Subgroup in the TWG intends to use an SNIA SDXI TWG Private Repository for development of SNIA Software using the approved Software License. Once TWG has approved software release, a SNIA membership request for Disclosure process has been completed, and approved by SNIA membership for release, the TWG intends to release the software to an SNIA Open Repository with public access. This TWG intends to allow external contribution to the SNIA SDXI TWG’s public repository as a Contributor License Agreement (CLA) Project.

This TWG will work for an architectural vision (See Fig.2) that supports a standard data mover interface for a variety of memory technologies and implementation choices.
PROPOSED PROGRAM OF WORK:

1. The sponsoring group will submit a draft spec as a starting point for a SNIA Architecture.
2. The TWG will develop a SNIA Architecture for a memory to memory data mover based on the submission.
3. Following completion of version 1.0 the TWG will commence activities on new focus areas related to data movement, such as:
 - New data mover operations for smart acceleration
 - Data mover operations involving persistent memory targets
 - Cache coherency models for data movers
 - Security Features involving data movers
 - Management architecture for data movers
4. The TWG will encourage adopting companies to work towards compliant software implementations and driver models.
5. The TWG will work with SNIA Marketing to educate and encourage adoption by OS, Hypervisors, OEMs, Applications and Data Acceleration vendors.

RESOURCES:
- Update June 2021: TWG is fully functional with committed support of over 20 companies

Software License
This TWG will develop software using the 3 clause BSD License as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.