SFF-TA-1020

Specification for

Cables and Connector Variants Based on SFF-TA-1002

Rev 1.0 February 19, 2020

SECRETARIAT: SFF TA TWG
This specification is made available for public review at http://www.snia.org/sff/specifications. Comments may be submitted at http://www.snia.org/feedback. Comments received will be considered for inclusion in future revisions of this specification.

The description of the connector in this specification does not assure that the specific component is available from connector suppliers. If such a connector is supplied, it should comply with this specification to achieve interoperability between suppliers. This specification originates from the Gen Z Consortium and supersedes their prior documents.

ABSTRACT: This specification defines cables and connector variants based on the SFF-TA-1002 connector system. In addition to cables, this specification defines a vertical 280 pin variation and a 12V and 48V high power segment for 4C connectors.

POINTS OF CONTACT:

John Norton Anthony Constantine Chairman SFF TA TWG
Distinguished Technologist Intel Corporation Email: SFF-Chair@snia.org
Hewlett Packard Enterprise 2111 NE 25th Ave
11445 Compaq Center Drive W MS JF5-270
Houston, TX 77070 Hillsboro, OR 97124
Email: john.norton@hpe.com Email: anthony.m.constantine@intel.com
Intellectual Property
The user's attention is called to the possibility that implementation of this specification may require the use of an invention covered by patent rights. By distribution of this specification, no position is taken with respect to the validity of a claim or claims or of any patent rights in connection therewith.
This specification is considered SNIA Architecture and is covered by the SNIA IP Policy and as a result goes through a request for disclosure when it is published. Additional information can be found at the following locations:

- Results of IP Disclosures: http://www.snia.org/sffdisclosures
- SNIA IP Policy: http://www.snia.org/ippolicy

Copyright
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing copyright_request@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA’s receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

Disclaimer
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.
Foreword
The development work on this specification was done by the SNIA SFF TWG, an industry group. Since its formation as the SFF Committee in August 1990, the membership has included a mix of companies which are leaders across the industry.

For those who wish to participate in the activities of the SFF TWG, the signup for membership can be found at http://www.snia.org/sff/join.

Revision History
Rev 1.0 February 19, 2020
- Initial Release
Contents

1. **Scope** 6
2. **References and Conventions** 6
 2.1 **Industry Documents** 6
 2.2 **Sources** 6
 2.3 **Conventions** 7
3. **Keywords, Acronyms, and Definitions** 8
 3.1 **Keywords** 8
 3.2 **Acronyms and Abbreviations** 8
 3.3 **Definitions** 9
4. **General Description** 11
 4.1 **Interoperability** 11
5. **Cable Requirements** 14
 5.1 **Internal Cable Plug Dimensions** 14
 5.2 **Vertical Internal Cable Receptacle Dimensions** 20
 5.3 **Right Angle Internal Cable Receptacle Dimensions** 24
 5.4 **Cable Mechanical Performance & Reliability** 27
6. **4C-HP Connector Requirements** 30
 6.1 **Mechanical Dimensions** 30
 6.2 **Electrical Requirements** 32
 6.3 **Power Sequencing Requirements** 32
7. **280 Pin Vertical Connector** 33
 7.1 **Mechanical Dimensions** 34

Appendix A. Appendix PCB Footprints 36
 A.1. **Vertical Internal Cable Receptacle Footprints** 36
 A.2. **Right Angle Internal Cable Receptacle Footprints** 37
 A.3. **280 Pin Connector PCB Footprint** 38
 A.4. **280 Pin Connector PCB Footprint** 39

Appendix B. Media Bay Example 40
Figures
Figure 3-1. Plug and Receptacle Definition
Figure 3-2. Right Angle Connector and Cable Assembly
Figure 3-3. Wipe for a Continuous Contact
Figure 4-1. SFF-TA-1002 Connector Sizes for Reference and 4C-HP and 280 Pin Connectors
Figure 4-2. Internal Cable Plug and Receptacle Overview
Figure 4-3. Vertical Internal Cable Connector and AIC Interoperability
Figure 4-4. Right Angle Internal Cable Connector and AIC Interoperability
Figure 5-1. Side Profile Illustration for Straight and Right Angle Internal Cable Exit Plugs
Figure 5-2. Standard Internal Cable Plug Side Profile
Figure 5-3. Alternative for Push Button / Pull Tab Envelope (applies to all internal cable plugs)
Figure 5-4. 1C Internal Cable Plug Mechanical Dimensions
Figure 5-5. 2C Internal Cable Plug Mechanical Dimensions
Figure 5-6. 4C Internal Cable Plug Mechanical Dimensions
Figure 5-7. Internal Cable Plug Detail Views
Figure 5-8. Side Profile Section View for Internal Cable Plug
Figure 5-9. Side Profile of Vertical Internal Cable Receptacle Mechanical Dimensions
Figure 5-10. 1C Vertical Internal Cable Receptacle Mechanical Dimensions
Figure 5-11. 2C Vertical Internal Cable Receptacle Mechanical Dimensions
Figure 5-12. 4C Vertical Internal Cable Receptacle Mechanical Dimensions
Figure 5-13. Side Profile of Right Angle Internal Cable Receptacle Mechanical Dimensions
Figure 5-14. 1C Right Angle Internal Cable Receptacle Mechanical Dimensions
Figure 5-15. 2C Right Angle Internal Cable Receptacle Mechanical Dimensions
Figure 5-16. 4C Right Angle Internal Cable Receptacle Mechanical Dimensions
Figure 6-1. 4C-HP 12V/48V High-Power Connector General View
Figure 6-2. 4C-HP 12V/48V High-Power Connector Dimensions
Figure 6-3. 4C-HP 12V/48V High-Power Connector Pin Locus
Figure 6-4. 4C-HP 12V/48V High-Power AIC Dimensions
Figure 7-1. 280 Pin Connector General View
Figure 7-2. 280 Pin Connector Dimensions
Figure 7-3. 280 Pin Connector Pin Locus
Figure 7-4. 280 Pin Connector SMT Lead Locus
Figure 7-5. 280 Pin AIC Dimensions
Figure A-1: 1C Vertical Internal Cable Receptacle Footprint
Figure A-2: 2C Vertical Internal Cable Receptacle Footprint
Figure A-3: 4C Vertical Internal Cable Receptacle Footprint
Figure A-4: 1C Right Angle Internal Cable Receptacle Footprint
Figure A-5: 2C Right Angle Internal Cable Receptacle Footprint
Figure A-6: 4C Right Angle Internal Cable Receptacle Footprint
Figure A-7: 4C-HP 12V/48V High-Power Connector Reference Footprint Dimensions
Figure A-8: 280 Pin Connector Reference Footprint Dimension
Figure B-1. Media Bay Module Mated with PCB Equipped with SFF-TA-1002 4C Connector
Figure B-2. PCB Routing Method to Maintain Pinouts Orientation
Figure B-3. 4C Vertical Media Bay / Internal Cable Receptacle Modifications

Tables
Table 4-1. Cable and AIC Interoperability Matrix
Table 5-1. Internal Cable Assembly Test Sequence
Table 5-2. Internal Cable Assembly Test Conditions
Table 5-3. Internal Cable Assembly Additional Requirements
Table 6-1. Dimensions for High-Power 12V and 48V AICs, Connectors and Footprints
1. Scope

This specification defines the electrical, mechanical, reliability, and manufacturing requirements of SFF-TA-1002 based cables and connectors. The connectors in this specification leverage the SFF-TA-1002 wherever possible while enabling additional features such as cable attach, high power, and high pin count for additional applications.

2. References and Conventions

2.1 Industry Documents

The following documents are relevant to this specification:

- ASME Y14.5 Dimensioning and Tolerancing
- EIA-364-1000 Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets Used in Controlled Environment Applications
- EIA-364-05 Contact Insertion, Release and Removal Force Test Procedure for Electrical Connectors published by the Electronic Industries Alliance
- EIA-364-13 Mating and Unmating Force Test Procedure for Electrical Connectors and Sockets published by the Electronic Industries Alliance
- EIA 364-23 Low Level Contact Resistance Test Procedures for Electrical Connectors and Sockets published by the Electronic Industries Alliance
- EIA-364-27 Shock Test Procedure for Electrical Connectors published by the Electronic Industries Alliance
- EIA-364-28 Vibration Test Procedure for Electrical Connectors and Sockets published by the Electronic Industries Alliance
- REF-TA-1011 Cross Reference to Select SFF Connectors
- SFF-TA-1002 Protocol Agnostic Multi-Lane High Speed Connector

2.2 Sources

The complete list of SFF documents which have been published, are currently being worked on, or that have been expired by the SFF Committee can be found at http://www.snia.org/sff/specifications. Suggestions for improvement of this specification will be welcome, they should be submitted to http://www.snia.org/feedback.

Copies of PCIe standards may be obtained from PCI-SIG (http://pcisig.com).

Copies of ASME standards may be obtained from the American Society of Mechanical Engineers (https://www.asme.org).

Copies of Electronic Industries Alliance (EIA) standards may be obtained from the Electronic Components Industry Association (ECIA) (https://www.ecianow.org).
2.3 Conventions

The following conventions are used throughout this document:

DEFINITIONS

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

LISTS

Lists sequenced by lowercase or uppercase letters show no ordering relationship between the listed items.

EXAMPLE 1 - The following list shows no relationship between the named items:

a. red (i.e., one of the following colors):
 - A. crimson; or
 - B. pink;

b. blue; or
c. green.

Lists sequenced by numbers show an ordering relationship between the listed items.

EXAMPLE 2 - The following list shows an ordered relationship between the named items:

1. top;
2. middle; and
3. bottom.

Lists are associated with an introductory paragraph or phrase, and are numbered relative to that paragraph or phrase (i.e., all lists begin with an a. or 1. entry).

DIMENSIONING CONVENTIONS

The dimensioning conventions are described in ASME-Y14.5, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

NUMBERING CONVENTIONS

The ISO convention of numbering is used (i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point). This is equivalent to the English/American convention of a comma and a period.

<table>
<thead>
<tr>
<th>American</th>
<th>French</th>
<th>ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>1,000</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>1,323,462.9</td>
<td>1 323 462,9</td>
<td>1 323 462,9</td>
</tr>
</tbody>
</table>
3. Keywords, Acronyms, and Definitions

For the purposes of this document, the following keywords, acronyms, and definitions apply.

3.1 Keywords

May/ may not: Indicates flexibility of choice with no implied preference.

Obsolete: Indicates that an item was defined in prior specifications but has been removed from this specification.

Optional: Describes features which are not required by the SFF specification. However, if any feature defined by the SFF specification is implemented, it shall be done in the same way as defined by the specification. Describing a feature as optional in the text is done to assist the reader.

Prohibited: Describes a feature, function, or coded value that is defined in a referenced specification to which this SFF specification makes a reference, where the use of said feature, function, or coded value is not allowed for implementations of this specification.

Reserved: Defines the signal on a connector contact [when] its actual function is set aside for future standardization. It is not available for vendor specific use. Where this term is used for bits, bytes, fields, and code values; the bits, bytes, fields, and code values are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

Restricted: Refers to features, bits, bytes, words, and fields that are set aside for other standardization purposes. If the context of the specification applies the restricted designation, then the restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word, or field (e.g., a restricted byte uses the same value as defined for a reserved byte).

Shall: Indicates a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: Indicates flexibility of choice with a strongly preferred alternative.

Vendor specific: Indicates something (e.g., a bit, field, code value) that is not defined by this specification. Specification of the referenced item is determined by the manufacturer and may be used differently in various implementations.

3.2 Acronyms and Abbreviations

AIC: Add In Card
BP: Back panel
HP: High Power
PCB: Printed Circuit Board
PTH: Plated Through Hole
RA: Right Angle
RAND: Reasonable And Non-Discriminatory
SMT: Surface Mount Technology
3.3 Definitions

Connector: Each half of an interface that, when joined together, establish electrical contact and mechanical retention between two components. In this specification, the term connector does not apply to any specific gender; it is used to describe the receptacle, the plug or the card edge, or the union of receptacle to plug or card edge. Other common terms include: connector interface, mating interface, and separable interface.

Contact mating sequence: A term used to describe the order of electrical contact established/ terminated during mating/un-mating. Other terms include: contact sequencing, contact positioning, mate first/break last, EMLB (early mate late break) staggered contacts, and long pin/short pin.

Contacts: A term used to describe connector terminals that make electrical connections across a separable interface.

Module: In this specification, module may refer to a plug assembly at the end of a copper (electrical) cable (passive or active), an active optical cable (AOC), an optical transceiver, or a loopback.

Plug: A term used to describe the connector that contains the penetrating contacts of the connector interface as shown in Figure 3-1. Plugs typically contain stationary contacts. Other common terms include male, pin connector, and card edge.

Receptacle: A term used to describe the connector that contains the contacts that accept the plug contacts as shown in Figure 3-1. Receptacles typically contain spring contacts. Other common terms include female and socket connector.

Figure 3-1. Plug and Receptacle Definition

Plated through hole termination: A term used to describe a termination style in which rigid pins extend into or through the PCB. Pins are soldered to keep the connector or cage in place. Other common terms are through hole or PTH.

Press fit: A term used to describe a termination style in which collapsible pins penetrate the surface of a PCB. Upon insertion, the pins collapse to fit inside the PCB’s plated through holes. The connector or cage is held in place by the interference fit between the collapsed pins and the PCB.
Right Angle: A term used to describe either a connector design where the mating direction is parallel to the plane of the printed circuit board upon which the connector is mounted or a cable assembly design where the mating direction is perpendicular to the bulk cable.

Direction of mating

PCB plane

a) Right angle connector

b) Right angle cable assembly

Figure 3-2. Right Angle Connector and Cable Assembly

Straight: A term used to describe a connector design where the mating direction is parallel to the bulk cable.

Surface mount: A term used to describe a termination style in which solder tails sit on pads on the surface of a PCB and are then soldered to keep the connector or cage in place. Other common terms are surface mount technology or SMT.

Termination: A term used to describe a connector’s non-separable attachment point. Common PCB terminations include: surface mount (SMT), plated through hole termination (PTH), and press fit (PF). Common cable terminations include insulation displacement contact (IDC), insulation displacement termination (IDT), wire slots, solder, welds, crimps, and brazes.

Vertical: A term used to describe a connector design where the mating direction is perpendicular to the printed circuit board upon which the connector is mounted.

Wipe: The distance a contact travels on the surface of its mating contact during the mating cycle as shown in Figure 3-3.

Figure 3-3. Wipe for a Continuous Contact
4. General Description

As stated, this specification defines cables and additional connector variants for the SFF-TA-1002 connector ecosystem. Figure 4-1 illustrates the additional connector variations, 4C-HP and 280 Pin Connector, compared to SFF-TA-1002 connectors. These connectors provide the following:

- 1C connector supports up to 8 differential pairs of data signals as specified in SFF-TA-1002.
- 2C connector supports up to 16 differential pairs of data signals as specified in SFF-TA-1002.
- 4C connector supports up to 32 differential pairs of data signals as specified in SFF-TA-1002.
- 4C-HP connector supports up to 32 differential pairs of data signals as specified in SFF-TA-1002, and a high-power interface as specified in this document.
- 280 Pin connector supports up to 90 differential pairs of data signals.

![Figure 4-1. SFF-TA-1002 Connector Sizes for Reference and 4C-HP and 280 Pin Connectors](image)

Figure 4-1 illustrates the internal cable plugs and connectors defined in this specification.

![Figure 4-2. Internal Cable Plug and Receptacle Overview](image)

4.1 Interoperability

Error! Reference source not found. illustrates the interoperability of the cables and connector variants defined in this specification and SFF-TA-1002 connectors. AICs interoperate as follows:

- A 1C AIC shall interoperate with a 1C, 2C, 4C, or 4C-HP connector.
- A 2C AIC shall interoperate with a 1C, 2C, 4C, or 4C-HP connector.
- A 4C AIC shall interoperate with a 1C, 2C, 4C, or 4C-HP connector.
- A 4C-HP AIC shall interoperate with a 1C, 2C, 4C, or 4C-HP connector.
 - A 4C-HP that supports 12V shall interoperate with a 4C-HP 12V keyed connector.
 - A 4C-HP that supports 48V shall interoperate with a 4C-HP 48V keyed connector.
If an AIC supports multiple connectors, then each 1C, 2C, 4C, or 4C-HP shall operate as described above. Internal cable plugs and receptacles are specified for 1C, 2C and 4C sizes in this specification, and shall support the interoperability specified in *Error! Reference source not found.*.

Table 4-1. Cable and AIC Interoperability Matrix

<table>
<thead>
<tr>
<th>Host Board</th>
<th>1C Card Edge</th>
<th>2C Card Edge</th>
<th>4C Card Edge</th>
<th>1C Cable</th>
<th>2C Cable</th>
<th>4C Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C Card Edge Only</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Card Edge Only</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C Card Edge Only</td>
<td></td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C Cable Recpt</td>
<td></td>
<td></td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Cable Recpt</td>
<td></td>
<td></td>
<td></td>
<td>Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C Cable Recpt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Green</td>
<td></td>
</tr>
</tbody>
</table>

The internal cable plug and receptacle interoperability is illustrated in Figure 4-3 and Figure 4-4.
Figure 4-3. Vertical Internal Cable Connector and AIC Interoperability

Figure 4-4. Right Angle Internal Cable Connector and AIC Interoperability
5. Cable Requirements

Cables support an active latching retention system to prevent accidental disconnection of the interface. The mating receptacle has mechanical support hardware providing strain relief and latching for the mating cable plug. The internal cable receptacles and plugs are specified in 1C, 2C and 4C configurations. All dimensions not specified in this document shall be as specified in SFF-TA-1002. The datum names are consistent for the receptacle connectors from SFF-TA-1002 with additional datum(s) added for the internal cable supporting structure. Refer to SFF-TA-1002 for all electrical and signal integrity requirements unless otherwise specified.

- A 1C, 2C, or 4C internal cable may support power.
- An internal cable may support sideband signals
- An internal cable that does not support power and / or sideband signals shall implement the full AIC interface including board dimensions and plated pads to ensure proper mechanical alignment between the connector contacts and the AIC pads and to avoid damage to the AIC and host.

5.1 Internal Cable Plug Dimensions

The internal cable plug dimensions illustrated in this section support both straight cable exit and right angle cable exit. All dimensions and tolerances conform to ASME Y14.5-2009. Tolerance unless otherwise specified +/- 0.13mm.

![Figure 5-1. Side Profile Illustration for Straight and Right Angle Internal Cable Exit Plugs](image)

The following internal cable plugs are specified to enable an internal cable-to-cable pitch of 9.3mm. For host designs that do not require a 9.3mm pitch, lower profile internal cable plugs (less than 21.5mm dimension below) may be enabled using wider housings (greater than 9mm dimension below)
The internal cable plug requires a “push” operation to disengage the plug latch from the receptacle. To support a user’s ability to disengage a mated internal cable when adjacent to another mated internal cable at the enabled internal cable-to-cable pitch, an alternative implementation using a pull tab is illustrated in Figure 5-3. The mechanism in the internal cable plug is required to support disengagement actuation through a both a “push” operation and a “pull” operation (each functionally independent within the same plug).

Developer Note: DC blocking capacitors may be placed on the host PCB, AIC PCB or, if needed per implementation, may be placed on the cable PCB within the cable plug assembly. The implementer should avoid redundant DC blocking capacitors in the channel. Depending on implementation, a cable plug assembly with DC blocking capacitors may require extending beyond the 21.5mm MAX height requirement.

Figure 5-2. Standard Internal Cable Plug Side Profile

Figure 5-3. Alternative for Push Button / Pull Tab Envelope (applies to all internal cable plugs)
Figure 5-4. 1C Internal Cable Plug Mechanical Dimensions
Figure 5-5. 2C Internal Cable Plug Mechanical Dimensions
Figure 5-6. 4C Internal Cable Plug Mechanical Dimensions

Figure 5-7. Internal Cable Plug Detail Views
Figure 5-8. Side Profile Section View for Internal Cable Plug
5.2 Vertical Internal Cable Receptacle Dimensions

The following figures illustrate mechanical dimensions of the vertical internal cable receptacles. Note: Datum J applies to the cable receptacle housing and Datum C applies to the connector body.

![Diagram of Vertical Internal Cable Receptacle Mechanical Dimensions]

Figure 5-9. Side Profile of Vertical Internal Cable Receptacle Mechanical Dimensions
Figure 5-10. 1C Vertical Internal Cable Receptacle Mechanical Dimensions
Figure 5-11. 2C Vertical Internal Cable Receptacle Mechanical Dimensions
Figure 5-12. 4C Vertical Internal Cable Receptacle Mechanical Dimensions
5.3 Right Angle Internal Cable Receptacle Dimensions

Figure 5-13. Side Profile of Right Angle Internal Cable Receptacle Mechanical Dimensions
Figure 5-14. 1C Right Angle Internal Cable Receptacle Mechanical Dimensions
Figure 5-15. 2C Right Angle Internal Cable Receptacle Mechanical Dimensions
5.4 Cable Mechanical Performance & Reliability

The following specifies the reliability testing requirements of internal cables receptacles and plugs. Unless otherwise specified in this section, the receptacles and plugs shall meet all reliability and mechanical testing requirements specified in SFF-TA-1002.
Table 5-1. Internal Cable Assembly Test Sequence

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Low Level Contact Resistance</td>
<td>1,6</td>
</tr>
<tr>
<td>Durability (preconditioning)</td>
<td>2</td>
</tr>
<tr>
<td>Durability Cycles</td>
<td>3</td>
</tr>
<tr>
<td>Axial Latch Retention</td>
<td>4</td>
</tr>
<tr>
<td>Longitudinal Force</td>
<td>5</td>
</tr>
<tr>
<td>Mechanical Shock</td>
<td>3</td>
</tr>
<tr>
<td>Vibration</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-2. Internal Cable Assembly Test Conditions

<table>
<thead>
<tr>
<th>Reliability Test Description</th>
<th>Test Procedure</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durability (preconditioning)</td>
<td>EIA-364-09, perform 5 plug/unplug cycles</td>
<td>No evidence of physical damage</td>
</tr>
<tr>
<td>Temperature Life (preconditioning)</td>
<td>60°C field temperature. Test Temperature and Test Duration per EIA 364-1000 Table 9</td>
<td>No evidence of physical damage</td>
</tr>
<tr>
<td>Low Level Contact Resistance (LLCR)</td>
<td>EIA-364-23 (termination of connector to board carrier shall be included in the measurements)</td>
<td>Refer to EIA-364-23, Table 5.4.2. LLCR Initial: 30mΩ Delta: 15mΩ</td>
</tr>
<tr>
<td>Mechanical Shock</td>
<td>EIA-364-27</td>
<td>- No damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 20mΩ maximum change from initial (baseline) contact resistance</td>
</tr>
<tr>
<td>Vibration</td>
<td>EIA-364-28</td>
<td>- No discontinuities of ≥ 1 microsecond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 20mΩ maximum change from initial (baseline) contact resistance</td>
</tr>
<tr>
<td>Axial Latch Retention</td>
<td>Pull in direction parallel to insertion, hold for minimum of 60 seconds</td>
<td>50N, no damage</td>
</tr>
<tr>
<td>Latitudinal/Longitudinal Pull Force</td>
<td>25N applied perpendicular to mating interface. 360 degrees in 45 degree increments, beginning perpendicular to long end of the connector body.</td>
<td>- Monitor LLCR, no discontinuities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 20mΩ maximum change from initial (baseline) contact resistance</td>
</tr>
<tr>
<td>Description</td>
<td>Procedure</td>
<td>Requirement</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Mating Force</td>
<td>EIA-364-13</td>
<td>SFF-TA-1002 Requirements + 10N MAX</td>
</tr>
<tr>
<td>Durability Cycles</td>
<td>EIA-364-30</td>
<td>25 cycles min</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>N/A</td>
<td>-20°C to +85°C degrees</td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
<td>80% Relative Humidity</td>
</tr>
</tbody>
</table>

Requirements and attributes not specified in this section or in *SFF-TA-1002* shall specified by the manufacturer of the internal cable receptacle or internal cable plug assembly.
6. 4C-HP Connector Requirements

This section specifies a variation of the SFF-TA-1002 connector that adds an additional high-power interface to the 4C interface. 4C-HP 12V/48V High-Power Connector General View illustrates a general view of the high-power AIC and connector. A key is used to prevent 180 degree insertion, mixing incompatible voltages of AICs and connectors, and plugging in a 4C+ AIC as specified in SFF-TA-1002.

Figure 6-1. 4C-HP 12V/48V High-Power Connector General View

6.1 Mechanical Dimensions

All dimensions and tolerances are in millimeters, and conform to ASME Y14.5-2009.

Figure 6-2. 4C-HP 12V/48V High-Power Connector Dimensions
Figure 6-3. 4C-HP 12V/48V High-Power Connector Pin Locus

Figure 6-4. 4C-HP 12V/48V High-Power AIC Dimensions

Table 6-1. Dimensions for High-Power 12V and 48V AICs, Connectors and Footprints

<table>
<thead>
<tr>
<th>Dimension</th>
<th>12V AIC</th>
<th>48V AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.05</td>
<td>4.05</td>
</tr>
<tr>
<td>B</td>
<td>32.31</td>
<td>33.31</td>
</tr>
<tr>
<td>C</td>
<td>77.89</td>
<td>78.89</td>
</tr>
<tr>
<td>D</td>
<td>21.03</td>
<td>21.53</td>
</tr>
<tr>
<td>E</td>
<td>24.39</td>
<td>25.39</td>
</tr>
<tr>
<td>F</td>
<td>44.60</td>
<td>45.60</td>
</tr>
<tr>
<td>G</td>
<td>57.31</td>
<td>58.31</td>
</tr>
<tr>
<td>H</td>
<td>42.60</td>
<td>43.60</td>
</tr>
<tr>
<td>J</td>
<td>54.86</td>
<td>55.86</td>
</tr>
<tr>
<td>K</td>
<td>75.34</td>
<td>76.34</td>
</tr>
<tr>
<td>L</td>
<td>76.89</td>
<td>77.89</td>
</tr>
<tr>
<td>M</td>
<td>3.57</td>
<td>4.57</td>
</tr>
<tr>
<td>N</td>
<td>37.67</td>
<td>38.17</td>
</tr>
<tr>
<td>P</td>
<td>79.74</td>
<td>80.74</td>
</tr>
<tr>
<td>Q</td>
<td>21.07</td>
<td>21.57</td>
</tr>
</tbody>
</table>
6.2 Electrical Requirements

The 4C-HP connector shall support up to 55A through the high-power connector. Refer to SFF-TA-1002 for all electrical and signal integrity requirements unless otherwise specified.

- Host designs that support the high-power interface shall provide 12V +/- 10% (10.8V to 13.2V) or 48V +/- 10% (43.2V to 52.8V) to the connector.
- 12V connectors shall support power pins specified in the 1C section and the high-power section of the connector to enable maximum of 660W at worst-case voltage conditions.
- 48V connectors shall support power only through the high-power section of the connector, i.e., not through the 1C section.

6.3 Power Sequencing Requirements

High-power AIC and hosts shall support a maximum power draw of 25W at initialization.

- A 48V AIC shall draw all power from the high-power pins, and shall not connect to any other power pins in the connector.
- A 12V AIC shall draw only from the 1C section of the connector at initialization and may draw from both the high-power pins and 1C section once enabled to draw more than 25W.
7. 280 Pin Vertical Connector

This section specifies a variation of the SFF-TA-1002 connector that contains 280 positions leveraging the SFF-TA-1002 interface. An example use case is a 32 lane PCIe riser card. A key is used to prevent 180 degree insertion and plugging in a 2C, 4C or 4C+ AIC.

![280 Pin Vertical Connector General View](image)
7.1 Mechanical Dimensions

All dimensions and tolerances are in millimeters, and conform to ASME Y14.5-2009. For dimensions not shown, reference SFF-TA-1002.

Figure 7-2. 280 Pin Connector Dimensions

Figure 7-3. 280 Pin Connector Pin Locus

Figure 7-4. 280 Pin Connector SMT Lead Locus
Figure 7-5. 280 Pin AIC Dimensions
Appendix A. Appendix PCB Footprints

A.1. Vertical Internal Cable Receptacle Footprints

All material within this section, whether defined as normative or informative, is subject to IP disclosure and RAND terms by SNIA SFF TA TWG member companies. The following figures show informative PCB footprints for internal vertical internal cable receptacle connector. All other dimensions of footprints are per SFF-TA-1002.

Figure A-1: 1C Vertical Internal Cable Receptacle Footprint

Figure A-2: 2C Vertical Internal Cable Receptacle Footprint
A.2. Right Angle Internal Cable Receptacle Footprints

The following figures show informative PCB footprints for internal right angle cable receptacle connector. All other dimensions of footprints are per SFF-TA-1002.

Figure A-4. 1C Right Angle Internal Cable Receptacle Footprint
A.3. 280 Pin Connector PCB Footprint

The following figures show informative PCB footprints for the 4C-HP 12V and 48V connectors. Refer to Reference source not found. for tabularized dimensions. All other dimensions of footprints are per SFF-TA-1002.
A.4. 280 Pin Connector PCB Footprint

The following figures show informative PCB footprints for the 280 Pin connector. All other dimensions of footprints are per SFF-TA-1002.

Figure A-8. 280 Pin Connector Reference Footprint Dimension
Appendix B. Media Bay Example

The following describes an example implementation of cables and connectors in a Media Bay application, where a Media Bay is a 3-D mechanical structure with a back panel PCB (BP) that accepts user pluggable media modules with the SFF-TA-1002 connector interface as illustrated in Figure B-1. The BP illustrates a 4C vertical connector that accepts a media module on one side and a 4C vertical internal cable receptacle placed directly opposite on the other side. An internal cable plugs into the 4C internal cable receptacle connector and into internal host resources.

Figure B-1. Media Bay Module Mated with PCB Equipped with SFF-TA-1002 4C Connector

The front media SFF-TA-1002 connector and the back internal cable SFF-TA-1002 connector are mounted precisely opposite on the BP PCB. This configuration provides the following benefits:

- Maximizes through BP airflow for cooling media modules and downstream components.
- Enables tighter module pitch.
- Enables cooling solutions for high-power devices.
- Eliminates signal trace lengths, signal swapping, and cross-over cabling as the pinouts are maintained on both connectors.
- Minimizes VIAs and short traces on the BP to support higher signaling rates.

The signal pinout for the internal media and rear internal cable are as specified in this document. The BP layout illustrated in maintains commonality of signal assignments on each connector by routing signals through VIAs on the rear of the BP to the front.
Figure B-2. PCB Routing Method to Maintain Pinouts Orientation

For modules that require the 4C-HP high-power connector and/or 48V, it is recommended that power be distributed through the BP to the power pins on the media connector and not delivered through the internal cable connector. It is recommended that 12V and non-high-speed differential pairs be provided through the BP distribution and/or be populated as needed.

Figure B-3 illustrates a recommended implementation of the 4C connectors to allow for BP belly-to-belly placement.
Figure B-3. 4C Vertical Media Bay / Internal Cable Receptacle Modifications

- Locating Pin Length PCB Thickness/2, Both Sides
- Populate SMT Retention Tab
- Cable side connector should not protrude through this side
- Locating Pin Length PCB Thickness/2, Both Sides