

SNIA SFF

SFF-9639

Reference Guide for

Multifunction 6X Unshielded Connector Pinouts

Rev 2.1<u>.1</u>

December January 24March 2613, 202519

Secretariat: SFF TA-TWG

Abstract: This document is a guide to the pinout usage of the SFF-8639 six-lane, high speed multifunction plugand receptacle connector that is designed for use as a common connector system supporting both SAS and PCIebased devices.

This specification is made available for public review at <u>https://www.snia.org/sff/specifications</u>. Comments may be submitted at <u>https://www.snia.org/feedback</u>. Comments received will be considered for inclusion in future revisions of this document.

This document has been released by SNIA. The SFF TWG believes that the ideas, methodologies, and technologies described in this document are technically accurate and are appropriate for widespread distribution.

The description of a connector in this document does not assure that the specific component is actually available from connector suppliers. If such a connector is supplied it must comply with this document to achieve interoperability between suppliers.

<u>Abstract:</u> This document is a guide to the pinout usage of the SFF-8639 six-lane, high speed multifunction plug and receptacle connector that is designed for use as a common connector system supporting both SAS and PCIe based devices.

POINTS OF CONTACT:

SNIA Technical Council Managing Director

Email: TCMD@snia.org

Multifunction 6X Unshielded Connector Pinouts

PUBLISHED DRAFT

EDITORS: Jason Stuhlsatz, Broadcom LTD Bill Lynn, AMD Mark Carlson, Kioxia

Bill Lynn Dell-One Dell Way, RR5-30 Round Rock, TX 78682 512-723-5528 william lynn@dell.com

Jason Stuhlsatz Broadcom LTD 4385 River Green Parkway Duluth, GA 30096 678-728-1406 jason.stuhlsatz@broadcom.com Mark Carlson Kioxia mark.carlson@kioxia.com

Chairman SFF TA-TWG Email: <u>SFF-Chair@snia.org</u>

PUBLISHED DRAFT

Copyright

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

- 1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
- 2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing <u>copyright request@snia.org</u>. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA's receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to <u>https://www.snia.org/feedback/</u>.

PUBLISHEDDRAFT

Foreword

The development work on this specification was done by the SNIA SFF TWG, an industry group. Since its formation as the SFF Committee in August 1990, as well as since SFF's transition to SNIA in 2016, the membership has included a mix of companies which are leaders across the industry.

For those who wish to participate in the activities of the SFF TWG, the signup for membership can be found at https://www.snia.org/sff/join.

Revision History

Rev 0.1	- Extracted Informative Annex A from SFF-8639
Rev 0.2	- Tables revised with the signal names of the using interfaces
Rev 0.3	- Specified how PET and PER pins are to be connected.
Rev 0.4	- Updated USB pinouts to tables
	- Added note on how PCIe names signals on devices
Rev 0.5	- Identified interface documents for usage models
Rev 0.6	- Updated the interface document references and moved them to Section 2.1
	- Added clarification that signal grounds are electrical reference grounds
Rev 0.7	- Added OCP and SNIA network pinouts to tables
	- Removed speed references
Rev 0.8	– SNIA pinouts finalized
	- SATA P3 DEVSLP updated to DVSLP/Power Disable
Rev 0.9	- Moved reference for Notes 1 and 2 in Table 4-2 and Table 4-3
Rev 1.0	- Removed *1 and *2 from SATA Express column in Table 4-3
Rev 1.1	– Updated SFF links to SNIA links
	 Added SFF-TA-1001 references & pinout, removed USB
	 Adjusted Quad PCIe pin names to align with changes in reference spec
	 Added PCI-SIG source to section 2.3
	 Added Note 3 to tables 4-2 & 4-3, replaced SFF-8639 with PCIe
	 Added Section 5
	 Updated chairman contact in POINTS OF CONTACT
	 Updated boilerplate items to SFF TA TWG terms
	 Fixed spacing in listings in Section 2.1
	 Removed dimensioning conventions in Section 2.4
Rev 2.0	July 18, 2018
	- Upgraded to SNIA template
	 Replaced "Development Reference Guide" with "Published" in header
	- Added "Reference" watermark
	- Reformatted Change History
Rev 2.0a	July 24, 2018
	- Updated some boiler plate material
	- Corrected "Reference" watermark
Rev 2.1	 Added missing pages (pages 8 & 9) December 13, 2019
Nev 2.1	 Removed SNIA Ethernet Drive and SATA Express columns
	 Added SNIA Littlemet Drive and SATA Express columns Added SNIA Native NVMe-oF pinout column from SNIA specification
	 Added SNIA Native NVMe of pinode column from SNIA specification Added SNIA Native NVMe-oF Dual Port Usage section
	 Replaced Table 5.1
Rev 2.1.1	March 26, 2025
EITH	- Added new boilerplate
	 Table 5-1 incorrectly calls out E16=0 in the headers, polarity should be E16=1
	 All signal references to '1' changed to correct term of 'Open'

PUBLISHED DRAFT

CONTENTS

1.	Scope 1.1 Application Specific Criteria	6 6
2.	References2.1Industry Documents2.2Sources2.3Conventions	6 6 7 7
3.	Keywords, Acronyms, and Definitions3.1Keywords3.2Acronyms and Abbreviations3.3Definitions	8 8 8 8
4.	General Description	10
5.	Connector Usage Models	10
6.	PCIe Dual Port Lane Usage	12
7.	SNIA Native NVMe-oF Dual Port Lane Usage	13

TABLES

Table 4-1: P Series Signals (Plug)	10
Table 4-2 S Series Signals (Plug)	11
Table 4-3 E Series Signals (Plug)	12
Table 5-1 PCIe Dual Port Lane Usage	12
Table 2-1 SNIA Native NVMe-oF Dual Port Lane Usage	13

1. Scope

This specification defines pinouts used with the SFF-8639 Multifunction 6X Unshielded Connector.

1.1 Application Specific Criteria

This is an informational document. See Industry Documents for official information.

1.2 Copyright

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

- 1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with noalteration, and,
- 2. Any document, printed or electronic, in which material from this document (or any portion hereof) isreproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA forgranting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing copyright_request@snia.org. Please include the identity of the requesting individual and/or companyand a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shallnot be unreasonably withheld. It can be assumed permission is granted if the Exception request is notacknowledged within ten (10) business days of SNIA's receipt. Any denial of permission for the Exception shallinclude an explanation of such refusal.

1.3 Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.-

2. References

2.1 Industry Documents

The following interface standards and specifications are relevant to this specification as of the date of publication.

SATA	SATA-IO Serial ATA Revision 3.2
SATA Express	SATA-IO Serial ATA Revision 3.2
Dual Port SAS	SFF-8482 & INCITS/ T10 Serial Attached SCSI-3
Multi-Link SAS	SFF-8629 & INCITS/ T10 Serial Attached SCSI-3
Quad PCIe	PCI-SIG PCI Express SFF-8639 Module Specification
SFF-TA-1001	Universal x4 Link Definition for SFF-8639
OCP (Kinetic)	Storage Device with Ethernet Interface
NXP	I2C-Bus Specification and User Manual
Native NVMe-oF	SNIA Native NVMe-oF Drive Specification

2.2 Sources

The complete list of SFF documents which have been published, are currently being worked on, or that have been expired by the SFF Committee can be found at https://www.snia.org/sff/specifications. Suggestions for improvement of this specification are welcome and should be submitted to https://www.snia.org/feedback. There are several projects active within the SFF TWG. The complete list of specifications which have been completed or are still being worked on is contained in the document SFF-8000 which can be found at http://www.snia.org/sff/specifications.

Copies of ANSI standards may be purchased from the InterNational Committee for Information Technology Standards (<u>http://www.techstreet.com/incitsgate.tmpl</u>).

2.3 Conventions

DEFINITIONS: Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE: If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

NUMBERING CONVENTIONS: The ISO convention of numbering is used (i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point). This is equivalent to the English/American convention of a comma and a period.

The dimensioning conventions are described in ANSI-Y14.5M, Geometric Dimensioning and Tolerancing. Alldimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are forguidance only).

The ISO convention of numbering is used i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point. This is equivalent to the English/American convention of a comma and a period.

American	French	ISO
0.6	0,6	0.6
1,000	1 000	1 000
1,323,462.9	1 323 462,9	1 323 462.9

3. Keywords, Acronyms, and Definitions

For the purposes of this document, the following keywords, acronyms, and definitions apply.

3.1 Keywords

May: Indicates flexibility of choice with no implied preference.

May or may not: Indicates flexibility of choice with no implied preference.

Reserved: Defines the signal on a connector contact. Its actual function is set aside for future standardization. It is not available for vendor specific use. Where this term is used for bits, bytes, fields, and code values; the bits, bytes, fields, and code values are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

Shall: Indicates a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: Indicates flexibility of choice with a strongly preferred alternative.

Vendor specific: Indicates something (e.g., a bit, field, code value) that is not defined by this specification. Specification of the referenced item is determined by the manufacturer and may be used differently in various implementations.

3.2 Acronyms and Abbreviations

There are no unique Acronyms or Abbreviations used in this document.

3.3 Definitions

Connector: Each half of an interface that, when joined together, establish electrical contact and mechanical retention between two components. In this specification, the term connector does not apply to any specific gender; it is used to describe the receptacle, the plug or the card edge, or the union of receptacle to plug or card edge. Other common terms include: connector interface, mating interface, and separable interface.

Contacts: A term used to describe connector terminals that make electrical connections across a separable interface.

Module: In this specification, module may refer to a plug assembly at the end of a copper (electrical) cable (passive or active), an active optical cable assembly, an optical transceiver, or a loopback.

Plug: A term used to describe the connector that contains the penetrating contacts of the connector interface as shown in Figure 3-1. Plugs typically contain stationary contacts. Other common terms include male, pin connector, and card edge.

Plug

Receptacle

FIGURE 3-1 PLUG AND RECEPTACLE DEFINITION

Receptacle: A term used to describe the connector that contains the contacts that accept the plug contacts as shown in Figure 3-1. Receptacles typically contain spring contacts. Other common terms include female and socket connector.

Multifunction 6X Unshielded Connector Pinouts

Multifunction 6X Unshielded Connector Pinouts

3.4. General Description

When a new SFF connector specification is developed there may be more than one industry interface planning to make use of it. Groups working on interfaces being developed under non-disclosure are unable to compare and discuss anticipated usage.

Pinouts are discussed during connector development and initial definitions assigned to ensure that the connector meets the needs of the interested interfaces.

This specification is a guide to the anticipated pinout usage of the interfaces under development.

4.5. Connector Usage Models

The connector system defined in SFF-8639 is considered to be an extension of the connector systems defined in SFF-8482 and SFF-8629. The SFF-8639 specification defines a multi-function connector system that may be used to implement specific storage device use cases.

The connector system defines a total of 68 contacts. The receptacle may implement all of the defined contacts while the plug may implement only the contacts required by the use case supported on a particular device. This allows for multiple device types supporting different use cases to be inserted into a common receptacle.

The connector system may be used for use cases not defined in this specification. The following three tables define the signal utilization based on use case. The signal name is given with respect to the receptacle. The signal ground is the electrical reference ground, the mechanical shell is a separate ground.

WARNING: The definitive reference for signals are the using interfaces identified in Sections 2.1. Readers should be aware that the tables below may not be accurate after these interfaces have been completed and distributed for public use.

		SATA	SAS	MultiLink SAS	Quad PCIe	SFF-TA- 1001	OCP Kinetic	SNIA Native NVMe-oF
P1		Retired	P1->P2	P1->P2	WAKE#	WAKE#	Presence Detect	
P2		Retired	P2->P1	P2->P1		Reserved	I2C Clock	
P3		DVSLP/ Power Disable	POWER DISABLE	POWER DISABLE	PWRDIS	PWRDIS	I2C Data	PWRDIS
P4		GND	GROUND	GROUND	IfDet#	IfDet#	Ground	IfDet#= Ground
P5	Ground	GND	GROUND	GROUND	Ground	Ground	Ground	Ground
P6	Ground	GND	GROUND	GROUND	Ground	Ground	Ground	Ground
P7	+5V	V5	V5, precharge	V5, precharge			+5V Precharge	
P8	+5V	V5	V5	V5			+5V	
P9	+5V	V5	V5	V5			+5V	
P10		GND	GROUND	GROUND	PRSNT#	PRSNT#	Ground	PRSNT# = Ground
P11		DAS/DSS/ DHU	READY LED	READY LED	ACTIVITY#	ACTIVITY#	Vendor Specific	ACTIVITY#
P12	Ground	GND	GROUND	GROUND	Ground	Ground	Ground	Ground
P13	+12V	V12	V12, precharge	V12, precharge	+12 V Precharge	+12 V Precharge	+12V Precharge	+12V Precharge
P14	+12V	V12	V12	V12	+12 V	+12 V	+12V	+12V
P15	+12V	V12	V12	V12	+12 V	+12 V	+12V	+12V

TABLE 5-1: P SERIES SIGNALS (PLUG)

		SATA	SAS	MultiLink SAS	Quad PCIe	SFF-TA- 1001	OCP Kinetic	SNIA Native NVMe-oF
S1	Ground	GND	GROUND	GROUND	Ground	Ground	Ground	Ground
S2	Rcvr+	A+	PR+	RX0+		PETp0	RX0+	
S3	Rcvr-	A-	PR-	RX0-		PETn0	RX0-	
S4	Ground	GND	GROUND	GROUND	Ground	Ground	Ground	Ground
S5	Xmtr-	B-	TP-	TX0-		PERn0	TX0-	
S6	Xmtr+	B+	TP+	TX0+		PERp0	TX0+	
S7	Ground	GND	GROUND	GROUND	Ground	Ground	Ground	Ground
S8	Ground		GROUND	GROUND	Ground	Ground	Ground	Ground
S9	Rcvr+		SR+	RX1+		PETp1	RX1+	
S10	Rcvr-		SR-	RX1-		PETn1	RX1-	
S11	Ground		GROUND	GROUND	Ground	Ground	Ground	Ground
S12	Xmtr-		ST+	TX1-		PERn1	TX1-	
S13	Xmtr+		ST-	TX1+		PERp1	TX1+	
S14	Ground		GROUND	GROUND	Ground	Ground	Ground	Ground
S15				Reserved	Reserved	HPT0		HPT0 = Open
S16	Ground			GROUND	Ground	Ground		Ground
S17	Rcvr+			RX2+	PETp1	PETp2		TX0+
S18	Rcvr-			RX2-	PETn1	PETn2		TX0-
S19	Ground			GROUND	Ground	Ground		Ground
S20	Xmtr-			TX2-	PERn1	PERn2		
S21	Xmtr+			TX2+	PERp1	PERp2		
S22	Ground			GROUND	Ground	Ground		Ground
S23	Rcvr+			RX3+	PETp2	PETp3		TX1+
S24	Rcvr-			RX3-	PETn2	PETn3		TX1-
S25	Ground			GROUND	Ground	Ground		Ground
S26	Xmtr-			TX3-	PERn2	PERn3		
S27	Xmtr+			TX3+	PERp2	PERp3		
S28	Ground			GROUND	Ground	Ground		Ground

TABLE 5-2 S SERIES SIGNALS (PLUG)

Note: PCIe names the signals on the device from the host perspective i.e. for PCIe products, a receiver on the device has a transmitter signal name.

		SATA	SAS	MultiLink SAS	Quad PCIe *1 *2 *3	SFF-TA- 1001 *1 *2 *3	OCP Kinetic	SNIA Native NVMe-oF
E1					REFCLKB+	REFCLKB+		
E2					REFCLKB-	REFCLKB-		
E3	+3.3V				+3.3 Vaux	+3.3V aux		+3.3V aux
E4					CLKREQ#/ PERSTB#	PERSTB#		ENRST1#
E5					PERST#	PERST#		ENRST#
E6					Reserved	IFDET2#		IFDET2# = Ground
E7					REFCLK+	REFCLK+		
E8					REFCLK-	REFCLK-		
E9					Ground	Ground		Ground
E10	Rcvr+				PETp0			
E11	Rcvr-				PETn0			
E12	Ground				Ground	Ground		Ground
E13	Xmtr-				PERn0			RX0-
E14	Xmtr+				PERp0			RX0+
E15	Ground				Ground	Ground		Ground
E16					Reserved	HPT1		HPT1 = Open
E17	Rcvr+				PETp3			
E18	Rcvr-				PETn3			
E19	Ground				Ground	Ground		Ground
E20	Xmtr-				PERn3			RX1-
E21	Xmtr+				PERp3			RX1+
E22	Ground				Ground	Ground		Ground
E23					SMBCLK	SMBCLK		SMBCLK
E24					SMBDAT	SMBDAT		SMBDAT
E25					DualPort En#	DualPort En#		DualPort En#

TABLE 5-3 E SERIES SIGNALS (PLUG)

5.6. PCIe Dual Port Lane Usage

For PCIe Dual Port mode, both Quad PCIe and SFF-TA-1001 redefine some of the PCIe lanes to explicitly be a second port with the secondary port starting the lane numbering at 0. The below table describes the Port and Lane numbering change when in dual port mode.

SFF-TA-1001 Dual Port	Quad PCIe Dual Port	PCIe	Lane	
S15=0, E16=00pen	S15= <u>Open</u> ¹ , E16= <u>0Open</u>	E25 = Open	E25 = 0	
S[2-6]	S[2-6] E[10-14] I		tA Lane0	
S[17-21]	S[17-21] S[17-21]		Lane1	
S[9-13]	S[23-27]	PortA Lane2	PortB Lane0	
S[23-27]	S[23-27] E[17-21]		PortB Lane1	

TABLE 6-1 PCIE DUAL PORT LANE USAGE

Note: Single lane (x1) port usage shall use Lane0.

6.7. SNIA Native NVMe-oF Dual Port Lane Usage

For SNIA Native NVMe-oF Dual Port mode, DualPortEn# redefines how the two Ethernet lanes are configured. <u>Table 2</u>-1 describes the Port and Lane numbering change when in dual port mode.

TABLE 2-1 SNIA NATIVE NVME-OF DUAL PORT LANE USAGE

SNIA Native NVMe-oF Lane	E25 = 0	E25 = <u>1-Open</u>
S[17-18]	TX0	TX0.1
S[23-24]	TX1	TX0.2
E[13-14]	RX0	RX0.1
E[20-21]	RX1	RX0.2