

SFF-TA-1015

Specification for

Fabric Device Pinout Specification

Rev 1.0 March 05, 2019

SECRETARIAT: SFF TA TWG

This specification is made available for public review at <u>http://www.snia.org/sff/specifications</u>. Comments may be submitted at <u>http://www.snia.org/feedback</u>. Comments received will be considered for inclusion in future revisions of this specification.

The description of the connector in this specification does not assure that the specific component is available from connector suppliers. If such a connector is supplied, it must comply with this specification to achieve interoperability between suppliers.

ABSTRACT: This specification defines the Fabric Device signal list, connector pinout and VPD EEPROM definition.

POINTS OF CONTACT:

TC McNally Western Digital Corporation 9950 Federal Drive Suite 100 Colorado Springs, CO 80921 Ph: 719-799-4623 Email: todd.mcnally@wdc.com Chairman SFF TA TWG Email: <u>SFF-Chair@snia.org</u>

Intellectual Property

The user's attention is called to the possibility that implementation of this specification may require the use of an invention covered by patent rights. By distribution of this specification, no position is taken with respect to the validity of a claim or claims or of any patent rights in connection therewith.

This specification is considered SNIA Architecture and is covered by the SNIA IP Policy and as a result goes through a request for disclosure when it is published. Additional information can be found at the following locations:

- Results of IP Disclosures: <u>http://www.snia.org/sffdisclosures</u>
- SNIA IP Policy: <u>http://www.snia.org/ippolicy</u>

Copyright

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

- 1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
- 2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing <u>copyright request@snia.org</u>. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA's receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to <u>http://www.snia.org/feedback/</u>.

Foreword

The development work on this specification was done by the SNIA SFF TWG, an industry group. Since its formation as the SFF Committee in August 1990, the membership has included a mix of companies which are leaders across the industry.

For those who wish to participate in the activities of the SFF TWG, the signup for membership can be found at <u>http://www.snia.org/sff/join</u>.

Revision History

Rev 1.0

- March 05, 2019:
- Initial approved release of document
- Fabric Device Pinout Specification

Table of Contents

1.	Scope	6
2.	References and Conventions2.1Industry Documents2.2Sources2.3Conventions	6 6 7
3.	 Keywords, Acronyms, and Definitions 3.1 Keywords 3.2 Acronyms and Abbreviations 3.3 Definitions 	8 8 8 9
4.	Signal List 4.1 Power and Grounds 4.2 High Speed Ports 4.3 Low Speed Interface 4.3.1 PORT_A/B_MODSEL 4.3.2 PORT_A/B_RESETL 4.3.3 PORT_A/B_SOL 4.3.4 PORT_A/B_SOL 4.3.5 Port_A/B_DMODE 4.3.7 PORT_A/B_INTL 4.3.8 PORT_A/B_INTL 4.3.8 PORT_A/B_MODPRSL 4.4 Fabric Status LED 4.5 I2C Interface 4.6 UART Interface 4.6 UART Interface 4.7 Fabric Device Status LEDs 4.8 Management 4.8.1 INT_L_OUT 4.8.2 PWR_EN_IN 4.8.3 PWR_OK_L_IN 4.8.4 AC_OK_L 4.8.5 SYS_ALIVE_H_IN 4.8.6 RESET_L_IN 4.8.7 SGMII Interface 4.9 GPIO 4.10 JTAG 4.11 Slot Address 4.13 Reserved	9 11 11 12 12 12 12 12 12 12 12 12 12 12
5.	Connector Pinout Definition	13
6.	 VPD Contents 6.1 Initial Power 6.2 Operational Power 6.3 Power Hold Up 6.4 Capability List 6.5 Standard Capability Data Structure 6.6 Vendor Specific Capability Data Structure 	15 17 17 17 17 18 18
7.	Dynamic Data	18

Table of Figures

NO TABLE OF FIGURES ENTRIES FOUND.

Table of Tables

Table 4-1 Signal List	9
Table 5-1 Fabric Device Connector Pinout	14
Table 6-1 Vital Product Data	15
Table 6-2: Device Classes	15
Table 6-3: Storage Subclasses	16
Table 6-4: Compute Subclasses	16
Table 6-5: Memory Subclasses	16
Table 6-6: Power Storage Subclasses	16
Table 6-7: Protocols	16
Table 6-8: Active Ports	17
Table 6-9: Link Speeds	17
Table 6-10 I2C Standard Capability Data Structure	18
Table 6-11 I2C Vendor Specific Capability Data Structure	18

1. Scope

This specification defines the Fabric Device Pinout Specification. This document comvers the signal list, signal definitions and connector pinout.

2. References and Conventions

2.1 Industry Documents

_	ENG-46158	Serial-GMII Specification

- IEEE Std 1149.1 IEEE Standard Test Access Port and Boundary-Scan Architecture
- REF-TA-1011 Cross Reference to Select SFF Connectors
- SFF-8679 QSFP+ 4X Hardware and Electrical Specification
- SFF-TA-1014 Fabric Attached Devices Connector Specification
- SPRUGP1 Universal Asynchronous Receiver/Transmitter (UART)
- UM10204 I2C-bus Specification and user manual

2.2 Sources

The complete list of SFF documents which have been completed, are currently being worked on, or that have been expired by the SFF Committee can be found at <u>http://www.snia.org/sff/specifications</u>. Suggestions for improvement of this specification will be welcome, they should be submitted to <u>http://www.snia.org/feedback</u>.

Copies of ANSI standards may be obtained from the InterNational Committee for Information Technology Standards (<u>http://www.techstreet.com/incitsgate.tmpl</u>).

Copies of PCIe standards may be obtained from PCI-SIG (<u>http://pcisig.com</u>).

Copies of InfiniBand standards may be obtained from the InfiniBand Trade Association (IBTA) (<u>http://www.infinibandta.org</u>).

Copies of IEEE standards may be obtained from the Institute of Electrical and Electronics Engineers (IEEE) (<u>https://www.ieee.org</u>).

Copies of SAS standards may be obtained from the International Committee for Information Technology Standards (INCITS) (<u>http://www.incits.org</u>).

Copies of JEDEC standards may be obtained from the Joint Electron Device Engineering Council (<u>https://www.jedec.org</u>).

Copies of OIF Implementation Agreements may be obtained from the Optical Internetworking Forum (<u>http://www.oiforum.com</u>).

Copies of ASME standards may be obtained from the American Society of Mechanical Engineers (<u>https://www.asme.org</u>).

Copies of Electronic Industries Alliance (EIA) standards may be obtained from the Electronic Components Industry Association (ECIA) (<u>https://www.ecianow.org</u>).

2.3 Conventions

The following conventions are used throughout this document:

DEFINITIONS

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

LISTS

Lists sequenced by lowercase or uppercase letters show no ordering relationship between the listed items.

EXAMPLE 1 - The following list shows no relationship between the named items:

- a. red (i.e., one of the following colors):
 - A. crimson; or
 - B. pink;
- b. blue; or
- c. green.

Lists sequenced by numbers show an ordering relationship between the listed items.

EXAMPLE 2 -The following list shows an ordered relationship between the named items:

- 1. top;
- 2. middle; and
- 3. bottom.

Lists are associated with an introductory paragraph or phrase, and are numbered relative to that paragraph or phrase (i.e., all lists begin with an a. or 1. entry).

DIMENSIONING CONVENTIONS

The dimensioning conventions are described in ASME-Y14.5, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

NUMBERING CONVENTIONS

The ISO convention of numbering is used i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point. This is equivalent to the English/American convention of a comma and a period.

American	French	ISO
0.6	0,6	0.6
1,000	1 000	1 000
1,323,462.9	1 323 462,9	1 323 462.9

3. Keywords, Acronyms, and Definitions

For the purposes of this document, the following keywords, acronyms, and definitions apply.

3.1 Keywords

May/ may not: A keyword that indicates flexibility of choice with no implied preference.

Obsolete: A keyword indicating that an item was defined in prior specifications but has been removed from this specification.

Optional: A keyword that describes features which are not required by the SFF specification. However, if any feature defined by the SFF specification is implemented, it shall be done in the same way as defined by the specification. Describing a feature as optional in the text is done to assist the reader.

Prohibited: A keyword used to describe a feature, function, or coded value that is defined in a referenced specification to which this SFF specification makes a reference, where the use of said feature, function, or coded value is not allowed for implementations of this specification.

Reserved: A keyword used for defining the signal on a connector contact [when] its actual function is set aside for future standardization. It is not available for vendor specific use. Where this term is used for bits, bytes, fields, and code values; the bits, bytes, fields, and code values are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

Restricted: A keyword referring to features, bits, bytes, words, and fields that are set aside for other identified standardization purposes. A restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word or field in the context where the restricted designation appears.

Shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: A keyword indicating flexibility of choice with a strongly preferred alternative.

Vendor specific: A keyword indicating something (e.g., a bit, field, code value) that is not defined by this specification. Specification of the referenced item is determined by the manufacturer and may be used differently in various implementations.

3.2 Acronyms and Abbreviations

RO: Read OnlyRX: ReceiverTX: TransmitterVPD: Vital Product Data

3.3 Definitions

Module: In this specification, module refers to an assembly that is terminated at the end of a direct attach copper (DAC) or an active optical cable (AOC), intended to mate to a device.

Termination: A term used to describe a connector's non-separable attachment point such as [a connector contact to a bulk cable/ a cage to a PCB or flex circuit/ bulk cable to a PCB or flex circuit/ solder tail to PCB]. Common PCB terminations include: surface mount (SMT), plated through hole termination (PTH), and press fit (PF). Common cable terminations include insulation displacement contact (IDC), insulation displacement termination (IDT), wire slots, solder, welds, crimps, and brazes.

4. Signal List

The signal summary, definitions and signal placement for the Fabric Device connector are detailed in this section. All signals listed are presented relative to the Fabric Device, IN is an input to the Fabric Device, OUT is an output from the Fabric Device, RX is an input to the Fabric Device and TX is an output from the Fabric Device.

Table 4-1	Signal List
-----------	-------------

Interface	Signal Name	Fabric Device I/O	Function
Power and	12V	I	12V Source
Ground	GND	I	Return Current Path
	PORT_A_1P_IN	I	
	PORT_A_1N_IN	I	
	PORT_A_2P_IN	I	
	PORT_A_2N_IN	I	Port A High Speed Data differential inputs
	PORT_A_3P_IN	I	Tore A right speed bala differential inputs
	PORT_A_3N_IN	I	
	PORT_A_4P_IN	I	
	PORT_A_4N_IN	I	
	PORT_B_1P_IN	I	
	PORT_B_1N_IN	I	
High Speed	PORT_B_2P_IN	I	
Data	PORT_B_2N_IN	I	Port B High Speed Data differential inputs
	PORT_B_3P_IN	I	Tore D right Speed Data differential inputs
	PORT_B_3N_IN	I	
	PORT_B_4P_IN	I	
	PORT_B_4N_IN	I	
	PORT_A_1P_OUT	0	
	PORT_A_1N_OUT	0	
	PORT_A_2P_OUT	0	Port A High Speed Data differential outputs
	PORT_A_2N_OUT	0	
	PORT_A_3P_OUT	0	
	PORT_A_3N_OUT	0	

Table 4-1 Signal List

	PORT_A_4P_OUT	0	
	PORT_A_4N_OUT	0	
	PORT_B_1P_OUT	0	
	PORT_B_1N_OUT	0	
	PORT_B_2P_OUT	0	
	PORT_B_2N_OUT	0	
	PORT_B_3P_OUT	0	Port B High Speed Data differential outputs
	PORT_B_3N_OUT	0	
	PORT B 4P OUT	0	
	PORT_B_4N_OUT	0	
	PORT A MODSEL	0	Port A QSFP Mode Select output
	PORT_A_RESETL	0	Port A QSFP Reset output
	PORT_A_I2C_SCL	0	Port A QSFP Serial Clock
	PORT_A_I2C_SDA	I/O	Port A QSFP Serial Data
	PORT A LPMODE	0	Port A QSFP Low Power Mode output
			Port A VccRx, VccTx, andr Vcc1 to be filtered
	PORT_A_3V3	Pwr	individually if needed
	PORT_A_INTL	I	Port A QSFP Interrupt
Low Speed Interface	PORT_A_MODPRSL	I	Port A QSFP Module Present input
Intenace	PORT_B_MODSEL	0	Port B QSFP Mode Select output
	PORT_B_RESETL	0	Port B QSFP Reset output
	PORT_B_I2C_SCL	0	Port B QSFP Serial Clock
	PORT_B_I2C_SDA	I/O	Port B QSFP Serial Data
	PORT_B_LPMODE	0	Port B QSFP Low Power Mode output Port B VccRx, VccTx, and Vcc1 to be filtered individually
	PORT_B_3V3	Pwr	if needed
	PORT_B_INTL	Ι	Port B QSFP Interrupt
	PORT_B_MODPRSL	I	Port B QSFP Module Present input
	PORT_A_LNK_LED	0	Port A Link LED
Fabric Status	PORT_A_ACT_LED	0	Port A Activity LED
LED	PORT_B_LNK_LED	0	Port B Link LED
	PORT_B_ACT_LED	0	Port B Activity LED
I2C Interface	I2C_SCL	Ι	I2C clock input
	I2C_SDA	I/O	I2C data
UART	UART_TX	0	UART transmit data
	UART_RX	Ι	UART receive data
	OK_LED_IN	Ι	OK LED input
Device LEDs	ID_LED_IN	Ι	ID LED input
	FLT_LED_IN	Ι	FAULT LED input
Management	INT_L_OUT	0	Interrupt active low output
nanagement	PWR_EN_IN	Ι	Power Enable input

Table 4-1 Signal List

		_	
	PWR_OK_L_IN	I	Power OK input
	AC_OK_L	I	Source power is OK
	SYS_ALIVE_H_IN	I	Indicator from management controller that system is alive
	RESET_L_IN	I	Reset active low input
	SGMII_P_OUT	0	Ethernet Management port differiential outputs
	SGMII_N_OUT	0	
	SGMII_P_IN	Ι	Ethernet Management port differiential inputs
	SGMII_N_IN	I	
GPIO	GPIO_0	I/O	General purpose I/O
GFIO	GPIO_1	I/O	General purpose I/O
	JTAG_TDI	Ι	Test Data In
	JTAG_TDO	0	Test Data Out
JTAG	JTAG_TMS	Ι	Test Mode Select
	JTAG_TCK	Ι	Test Clock
	JTAG_TRSTN	I	Test Reset active low
	SLOT_0_IN	Ι	
Slot Address	SLOT_1_IN	I	System assigns a slot number (0x0 thru 0xF) to each
SIOL AUDIESS	SLOT_2_IN	Ι	Device
	SLOT_3_IN	Ι	
	PRSNT_L	0	Idndicates the Fabric Device is present. Pulled low through a 1000hm resistor on Fabric Device.
Present			Indicates the Fabric Device is a blank nonoperational Device. Pulled low through a 1000hm resistor on
	BLANK_PRESENT_L	0	Fabric Device
Reserved	RESERVED2	I/O	
Neserveu	RESERVED3	I/O	

4.1 Power and Grounds

The Fabric Device supports a 12V power source to power all circuitry on the Device. The 12V rails is expected to be powered at all times while the Fabric Device is inserted in the system.

4.2 **High Speed Ports**

The high speed fabric interface provides two (2), four (4) lane ports for external connectivity. The external connectivity is defined by the specific Device and will have connectivity according to the enclosure the Device is inserted into. These ports consist of two (2) differential ports each, one for Tx and one for Rx. PORT A/B*P/N IN pair is defined as an input to the Fabric Device

PORT A/B*P/N OUT pair is defined as an output from the Fabric Device

4.3 Low Speed Interface

The low speed interface signals combine with Fabric interfaces for cabled systems, these signals will have connectivity according to the enclosure the Device is inserted into. All signals listed in this section shall follow electrical specifications defined in SFF-8679.

4.3.1 PORT_A/B_MODSEL

Port A and B ModSelL is an active low signal and is used by the Fabric Device to enable communication on the 2wire serial bus of the module.

4.3.2 PORT_A/B_RESETL

Port A and B RESETL is an active low signal and is used by the Fabric Device to reset the module.

4.3.3 PORT_A/B_3V3

Port A and B 3.3V is a power source to the module connected to the enclosure, these 3.3V source pins are all connected to the same power source within the Fabric Device.

4.3.4 PORT_A/B_SCL

Port A and B 2-wire serial interface clock. The port 2-wire interface is defined in SFF-8679. The Fabric Device does not provide a pullup on this signal.

4.3.5 Port_A/B_SDA

Port A and B 2-wire serial interface data signal. The port 2-wire interface is defined in SFF-8679. The Fabric Device does not provide a pullup on this signal.

4.3.6 PORT_A/B_LPMODE

Port A and B low power mode hardware control pin to be used in combination with fabric connections. LPMODE is an active high signal and is defined by SFF-8679.

4.3.7 PORT_A/B_INTL

Port A and B INTL is an active low interrupt output from the fabric cable possibly indicating a module operation fault. The Fabric Device identifies the fault using the 2-wire interface.

4.3.8 PORT_A/B_MODPRSL

Port A and B module present is an active low output from the fabric cable indicating a module present.

4.4 Fabric Status LED

Fabric Status LEDs for both the A and B:

PORT_A_LNK_LED drives the port A link LED on the fabric connector.

PORT_A_ACT_LED drives the port A activity LED on the fabric connector.

PORT_B_LNK_LED drives the port B link LED on the fabric connector.

PORT_B_ACT_LED drives the port B activity LED on the fabric connector.

These LEDs are defined by the specific fabric operation of the Fabric Device.

4.5 I2C Interface

This I2C is a standard 2-wire serial interface following I2C-bus specification for low speed out of band management of the Fabric Device. This 2-wire serial interface must have a Fabric Device VPD EEPROM at I2C address 0xA0 and a general purpose device at address 0x60 defined by Fabric Device vendor.

4.6 UART Interface

The UART interface to the Fabric Device is a low-level debug interface that may be connected to any intelligent part of the Device that requires access to a UART from the enclosure.

4.7 Fabric Device Status LEDs

The Fabric Device status LEDs are optional LEDS on the Fabric Device that can be driven by the Device itself or from the enclosure. These are inputs to the Fabric Device and have internal 10k pulldown resistors.

OK_LED_IN is a green LED indicating the Fabric Device is OK

ID_LED_IN is a blue LED identifying the Fabric Device.

FLT_LED_IN is an amber LED indicating the Fabric Device has a fault.

Fabric Device Pinout Specification

4.8 Management

The management interface for the Fabric Device is primarily over the 1G SGMII interface.

4.9 INT_L_OUT

Interrupt out is an active low signal to the enclosure from the Fabric Device.

4.10 PWR_EN_IN

Power enable input is an active high signal to the Device used by the enclosure to allow full power operation on the Fabric Device. The Device shall not consume more than 5 Watts of power while PWR_EN_IN is logic low.

4.11 PWR_OK_L_IN

Power OK is an active low signal from the enclosure power supplies indicating the power from the PSUs is OK

4.11.1 AC_OK_L

AC OK is an active low signal from the enclosure power supplies indicating the AC to the power supplies is OK

4.11.2 SYS_ALIVE_H_IN

System alive is an active high input to the Fabric Device indicating the system is OK.

4.11.3 RESET_L_IN

Reset in is an active low signal used by the enclosure to reset the Fabric Device. Reset has an internal 10kOhm pullup to 3.3V

4.11.4 SGMII Interface

The SGMII port is the primary management interface into the Fabric Device. This interface follows the specification defined in ENG-46158.

4.12 GPIO

There are two GPIO signals on the connector for the Fabric Device, these two signals are marked as reserved.

4.13 JTAG

The JTAG interface follows standard IEEE1149 with the chain inside the Fabric Device. This interface should be used for any components that get reprogrammed via JTAG.

4.14 Slot Address

The 4 bits of slot address indicate to the Fabric Device what slot in an enclosure it is installed in.

4.15 Present

PRSNT_L is an active low signal that indicates the Fabric Device is present in the system. This signal shall be pulled to ground through a 1000hm resistor on the Fabric Device.

BLANK_PRSNT_L is an active low signal to indicate that the Fabric Device is a blank Device and does not have any functionality. This signal shall be pulled to ground through a 1000hm resistor on the Fabric Device.

4.16 Reserved

There are two (2) reserved pins for future use of Fabric Devices.

5. Connector Pinout Definition

PUBLISHED

1 Table 5-1 Fabric Device Connector Pinout

2

	8	7	6	5	4	3	2	1	
т	AC_OK_L	GND	PWR_OK_L_IN	GND	UART_RX	GND	UART_TX	GND	т
		PORT_A_2N_O		PORT_A_1N_O		PORT_B_2N_O		PORT_B_1N_O	
S	GND	UT	GND	UT	GND	UT	GND	UT	S
	PORT_A_4N_O	PORT_A_2P_O	PORT_A_3N_OU	PORT_A_1P_O	PORT_B_4N_OU	PORT_B_2P_O	PORT_B_3N_O	PORT_B_1P_O	
R		UT		UT		UT		UT	R
Q	PORT_A_4P_O UT	GND	PORT_A_3P_OU T	GND	PORT_B_4P_OU T	GND	PORT_B_3P_O UT	GND	Q
Y	01	PORT_A_2N_I	1	PORT_A_1N_I	1	UND	01	PORT B 1N I	_
Р	GND	N	GND	N	GND	PORT_B_2N_IN	GND	N	Р
	PORT_A_4N_I	PORT_A_2P_I					PORT_B_3N_I	PORT_B_1P_I	
0	Ν	N	PORT_A_3N_IN	PORT_A_1P_IN	PORT_B_4N_IN	PORT_B_2P_IN	Ν	N	0
	PORT_A_4P_I						PORT_B_3P_I		
Ν	N	GND	PORT_A_3P_IN	GND	PORT_B_4P_IN	GND	N	GND	Ν
м	GND		GND	PORT_B_RESE TL	GND	PORT_A_RESET	GND	12V	М
IM	GND	JTAG_TRSTN	PORT B MODP	PORT B MODS	PORT_A_MODP	PORT_A_MODS	GND	120	
L.	SLOT_3_IN	JTAG_TCK	RSL	EL	RSL	EL	I2C_SDA	12V	L
К	SLOT_2_IN	GND	PORT_B_INTL	GND	PORT_A_INTL	GND	I2C_SCL	GND	К
J	GND	JTAG_TMS	GND	RESERVED2	GND	FLT_LED_IN	GND	12V	J
I	SLOT_1_IN	JTAG_TDO	PORT_B_3V3	RESERVED1	PORT_A_3V3	ID_LED_IN	12V	12V	I
н	SLOT_0_IN	GND	PORT_B_3V3	GND	PORT_A_3V3	GND	12V	GND	н
G	GND	JTAG_TDI	GND	PRSNT_L	GND	OK_LED_IN	GND	12V	G
		SYS_ALIVE_H_	PORT_B_LPMOD		PORT_A_LPMOD	PORT_B_ACT_L			
F	SGMII_N_IN	IN	E	RESET_L_IN	E	ED	12V	12V	F
Е	SGMII_P_IN	GND	PORT_B_I2C_S DA	GND	PORT_A_I2C_S DA	GND	12V	GND	E
						PORT_B_LNK_L			
D	GND	GPIO_1	GND	PWR_EN_IN	GND	ED	GND	12V	D
С	SGMII_N_OUT	GPIO 0	PORT_B_I2C_SC L	INT L OUT	PORT_A_I2C_SC L	PORT_A_ACT_L ED	12V	12V	С
В	SGMII P OUT	GND	PORT B 3V3		PORT A 3V3	GND	12V	GND	В
	50PIII_F_001			BLANK_PRSNT	10K1_A_3V3	PORT_A_LNK_L	IZV		
Α	GND	GND	GND	L	GND	ED	GND	GND	Α
	8	7	6	5	4	3	2	1	

1 6. VPD Contents

2 The Fabric Device has a slave I2C bus that operates at 100kHz. The Fabric Device has a VPD EEPROM located at 3 2 wire serial interface address 0xA0. The VPD data is set at manufacturing and is not changed during runtime.

2 wire serial interface address 0xA0. The VPD data is set at manufacturing and is not changed during runtime.
The VPD data is defined in Table 6-1 Vital Product Data. All strings are all 8-bit ASCII, left justified, null terminated, with trailing nulls.

5 6 7

Table 6-1 Vital Product Data

Addr	Size (B)	R/W	Value type	Function	Default Value	Description
0	1	RO	Unsigned Int	Version	Vendor	Format version
1	3	RO		Version	0	Reserved
4	1	RO	Unsigned Int	Device Class	Vendor	Identifies Device class type
5	1	RO	Unsigned Int	Device Class	Vendor	Identifies Device subclass type
6	40	RO	8-bit ASCII		Vendor	Vendor name string
46	40	RO	8-bit ASCII		Vendor	Serial number string
86	40	RO	8-bit ASCII		Vendor	Model number string
126	40	RO	8-bit ASCII	ID	Vendor	Part number string
166	36	RO	8-bit ASCII		Vendor	UUID string (with hyphens)
202	8	RO	8-bit ASCII		Vendor	MFG Date String "DDMMYYYY"
210	12	RO			0	Reserved
222	1	RO	Unsigned Int		Vendor	Protocol
223	1	RO	Unsigned Int	Fabric	Vendor	Active Ports
224	2	RO			0	Reserved
226	1	RO	Unsigned Int	Port 0	Vendor	Maximum Link speed
227	1	RO	Unsigned Int	FULU	Vendor	Maximum Link width (#)
228	1	RO	Unsigned Int	Port 1	Vendor	Maximum Link speed
229	1	RO	Unsigned Int	FULL	Vendor	Maximum Link width (#)
230	2	RO	Unsigned Int		Vendor	Initial power requirement (W)
232	2	RO	Unsigend Int	Initial Power ¹⁷	Vendor	Initial power duration (ms)
234	2	RO			0	Reserved
236	2	RO	Unsigned Int	Operational Power ¹⁷	Vendor	Maximum 12V Rail power (W)
238	2	RO	Unsigned Int		Vendor	Minimum 12V Rail power (W)
240	4	RO	Unsigned Int		Vendor	Maximum discharge time (ms)
244	4	RO	Unsigned Int	Power Hold-up ¹⁷	Vendor	Maximum discharge current (mA)
248	4	RO	Unsigned Int		0	Reserved
252	2	RO	Unsigned int	UART	Vendor	Maximum speed (kHz)
254	2	RO	Unsigned int	Extensibility	Vendor	Capability List pointer

8 9

Table 6-2: Device Classes

ID	Device Class				
0	Blank				
1	Other				
2	Storage				
3	Memory				
4	Compute				
5	Uninterruptible Power Supply				
6-Fh	Reserved				

10

Table 6-3: Storage Subclasses

ID	Device Subclass				
0	None				
1	1 Other				
2	Solid State Storage				
3	Hard Disk Drive				
4-Fh	Reserved				

1 2

Table 6-4: Compute Subclasses

TD	Povine Subdage
ID	Device Subclass
0	None
1	Other
2	CPU
3	GPU
4	FPGA
5	ASIC
6-Fh	Reserved

3

4 Table 6-5: Memory Subclasses

ID	Device Subclass
0	None
1	Other
2	Volatile Memory
3	Non-Volatile Memory
4-Fh	Reserved

5

6 **Table 6-6: Power Storage Subclasses**

ID	Device Subclass
0	None
1	Other
2	Battery
3	Capacitor
4-Fh	Reserved

7 8

Table 6-7: Protocols

ID	Device
0	None
1	Other
2	Ethernet
3	Infiniband
4	PCIe
5	Fibre Channel
6	Gen-Z
7	SAS
8-Fh	Reserved

9 10

Table 6-8: Active Ports

ID	Device
0	No ports active
1	Port 0 active
2	Port 1 active
3	Both ports active
4-Fh	Reserved

1

2 Table 6-9: Link Speeds

ID	Device
0	None
1	Other
2	1 Gb
3	6 Gb
4	10 Gb
5	12 Gb
6	16 Gb
7	24 Gb
8	25 Gb
9	32 Gb
А	56 Gb
B-Fh	Reserved

3

4 6.1 Initial Power

5 The initial power fields are intended to describe power draw behavior that is transient shortly after power on. For 6 example, a Device may need to charge power loss protection capacitors and will draw a higher than maximum 7 operational power until charged.

8 6.2 Operational Power

9 These fields indicate the power consumption limits under normal operation. The maximum power field indicates 10 what the maximum power that this Device will consume is. The minimum power field indicates the minimum power 11 required for this Device to function. Powering the Device at minimum power does not guarantee any level of 12 performance. The minimum power level is meant to indicate what the minimum power for this Device to respond 13 to requests over the fabric interfaces.

14 **6.3 Power Hold Up**

The power hold-up fields are meant to describe behavior of the Device after a power loss event. For a Power storage Device, these fields can be used to determine how long it can sustain other Devices in the enclosure. For a non-power storage Device, these fields indicate how long the Device will remain operational under its own internal holdup power.

19 6.4 Capability List

20 The capability list allows for the discovery of optional extended features. These structures are optional. The data structure is constructed as a linked list. The pointer (if any) located at offset 254, points to the first capability 21 22 structure whose format is shown in Table 6-10 I2C Standard Capability Data Structure. The Capability data structure 23 has a 4-byte header. The first 2 bytes identify the Capability ID of the feature. A Capability ID of 0xFE indicates a 24 vendor specific capability as shown in Table 6-11 I2C Vendor Specific Capability Data Structure. The second two 25 bytes of the capability header are Next Address field and contain a pointer to the next capability in the list. 26 Subsequent bytes are defined by each specific capability or are vendor specific. A value of zero in the Next Address 27 field indicates the end of the linked list.

1 6.5 Standard Capability Data Structure

2 Table 6-10 I2C Standard Capability Data Structure

Byte 3	Byte 2	Byte 1	Byte 0
Next Address Pointer		Capability ID	
Optional parameters specific to each capability			

4 6.6 Vendor Specific Capability Data Structure

Table 6-11 I2C Vendor Specific Capability Data Structure

Byte 3	Byte 2	Byte 1	Byte 0
Next Address Pointer		0xFE	
Optional parameters specific to each capability			

5

3

6 7. Dynamic Data

7 Optional Dynamic Data are hosted by a Device on the I2C bus at address 0x30 (i.e., slave address bits 7-0 8 correspond to 0011 000). The dynamic data is a single 128-byte vendor defined register. As the primary method 9 of interfacing with the Fabric Device from the chassis management processor is the internal 1Gb Ethernet link, the 10 use of the Dynamic Data over I2C interface is to provide diagnostic information as to why that internal 1Gb Ethernet 11 link is not viable. As the usage of the Dynamic Data is to help with debugging efforts, the data layout and fields are not defined in this standard and are to be set by each Device vendor. The purpose of defining the Dynamic 12 Data address 0x30 and length of 128 Bytes is to allow management software utilities and applications to acquire a 13 14 standardized quantity of data from any Device that may then be passed on to Customer Support Representatives 15 for interpretation