SFF-TA-1006

Specification for

Enterprise and Datacenter 1U Short SSD-Device Form Factor

(E1.S)

Rev 1.4.1 March 27, 2020-April 30, 2021

SECRETARIAT: SFF TA TWG

This specification is made available for public review at http://www.snia.org/sff/specifications. Comments may be submitted at http://www.snia.org/feedback. Comments received will be considered for inclusion in future revisions of this specification.

The description of the form factor in this specification does not assure that the specific component is available from suppliers. If such a form factor is supplied, it should comply with this specification to achieve interoperability between suppliers.

ABSTRACT: This specification defines the mechanical attributes of a 1U short form factor for a solid-state-drive device that fits vertically in host systems designed to fit in one or multiple units of the standard 1U rack mount height.

This specification provides a common reference for host systems manufacturers, host system integrators, and device suppliers. This specification originates from Enterprise and Datacenter SSD Form Factor Working Group (EDSFF). Based on non-SSD devices also using EDSFF and agreement from the EDSFF Working Group, the SFF TA TWG agreed changing EDSFF to Enterprise and Datacenter Standard Form Factor.

The description of the device in this specification does not assure that the specific component is actually available from device suppliers. If such a device is supplied it shall comply with this specification to achieve interoperability between device suppliers.

POINTS OF CONTACT:

Anthony Constantine
Intel Corporation
2111 NE 25th Ave
MS JF5-270

Jonathan Hinkle
Lenovo
7001 Development Drive
Morrisville, NC 27560

Chairman SFF TA TWG
Email: SFF-Chair@snia.org
Intellectual Property

The user's attention is called to the possibility that implementation of this specification may require the use of an invention covered by patent rights. By distribution of this specification, no position is taken with respect to the validity of a claim or claims or of any patent rights in connection therewith. This specification is considered SNIA Architecture and is covered by the SNIA IP Policy and as a result goes through a request for disclosure when it is published. Additional information can be found at the following locations:

- Results of IP Disclosures: http://www.snia.org/sffdisclosures
- SNIA IP Policy: http://www.snia.org/ippolicy

Copyright

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing copyright_request@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA's receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.
Foreword

The development work on this specification was done by the SNIA SFF TWG, an industry group. Since its formation as the SFF Committee in August 1990, the membership has included a mix of companies which are leaders across the industry.

For those who wish to participate in the activities of the SFF TWG, the signup for membership can be found at http://www.snia.org/sff/join.

Revision History

Rev 1.0 January 16, 2018:
- Initial release with editorial fixes to TOC and Fig 4-1 diagram

Rev 1.1 June 1, 2018:
- Updated IP section and foreword per current policy.
- Corrected ASME reference in 2.3 for consistency.
- Corrected dimension F1 in Table 4-1.
- Corrected Figure 4-2 to remove E dimension and changed the radius of the notches in Detail and B.
- Further updates to TOC

Rev 1.2 April 12, 2019
- Converted to the new SFF document template
- Added new name (E1.S).
- Clarified abstract.
- Section 3.3: Added definition for enclosure and modified definition of 1U.
- Section 5: Clarified power is a recommendation and added recommended power for optional heat spreader and optional enclosures.
- Section 5.1: Added clarification to bounding volume, surface dimensions, and rounding.
- Table 5-1: Modified Measurement C2 to align with SFF-TA-1002.
- Table 5-1: Modified Measurements D3 and D4.
- Table 5-1: Fixed the comment for Measurement F6.
- Section 5.4, 5.5: Added. This adds optional symmetric and asymmetric enclosure dimensions.
- Section 7: Added. This is an informative section on system thermal design guidelines.

Rev 1.3 July 17, 2019
- Section 5.1: Added statement to clarify that PCB dimensions are not required but highly recommended for enclosures specified in sections 5.4 and 5.5.
- Section 5.1 changed added wording for PCB in enclosures
- Figure 5.1: Added new dimension D5
- Figure 5.1: Added label for LED facing side
- Table 5.1: Clarified measurement for D1, D2 is to LED center position
- Table 5-1: Made E1-E7 BASIC to match the drawing
- Table 5-1: Added comment to drawing on mounting hole dependency to C2
- Section 5.4, 5.5, 6: Added x8 Card Edge along with Dimension B10 (Enclosure to x8 Datum F)
- Section 5.4, 5.5: Added Measurement C8 (Datum Y to Datum T), B11 (Datum W to LED center)
- Section 5.5: Added note to clarify Section 5.5 dimensions are equivalent to section 5.4
- Figure 5-3, 5-4: Add label to primary and secondary side
- Figure 5-3, 5-4: Change drawing ordering
- Figure 5-3, 5-4, Table 5-3: Added dimensions D6, D7, D8, E16
- Table 5-3: Fixed an error in value of B8.
- Table 5-4: Deleted dimensions B8 and B9. Redundant

Rev 1.4 March 27, 2020
- Added 15mm asymmetric thickness to section 5.5, corresponding thermal entry in Table 7.1 and descriptions in sections 5.1 and 7.1.

Rev 1.4.1 April 30, 2021
- Changed SSD to device and abstract edit to reflect EDSFF name change.
Section 5: Clarification on power and only PCB card edge is exposed outside the enclosure area.
Section 5: Removal of default tolerance and added tolerances to Table 5-2.
Section 5: Datum name change from “Y” to “G” to align with SFF-TA-1002 Datum.
Section 5: Removal of Power references apart from section 5.1 recommendations.
Section 5.4, 5.5: Clarification that both 1C and 2C card edges are allowed.
Section 5.4, 5.5: Removed measurement E16 (REF dimension) and moved C8 to a different view.
Section 5.4, 5.5: Note added for recommended ground contact.
Section 7: Deleted informative thermal guidance. Replaced with power and thermal requirements.
1. Scope
 1.1 Application Specific Criteria
2. References and Conventions
 2.1 Industry Documents
 2.2 Sources
 2.3 Conventions
3. Keywords, Acronyms, and Definitions
 3.1 Keywords
 3.2 Acronyms and Abbreviations
 3.3 Definitions
4. General Description
 4.1 Configuration Overview/Descriptions
5. Mechanical Specification
 5.1 Overview
 5.2 Physical Definition: 1U Short Form Factor
 5.3 Physical Definition: 1U Short Form Factor with Optional Heat Spreader
 5.4 Physical Definition: 1U Short Form Factor with Optional Symmetric Enclosure
 5.5 Physical Definition: 1U Short Form Factor with Optional Asymmetric Enclosure
6. Informative: SFF-TA-1002 edge (plug) Mechanical drawing
 6.1 Overview
 7.1 Power
 7.2 Thermals

Figures
32 Figure 4-1. Example system implementations of 1U short form factor.
33 Figure 5-1. 5.9mm Thick 1U Short Form Factor drawing
34 Figure 5-2. 1U Short Form Factor drawing with heat spreader option
35 Figure 5-3. 1U Short Form Factor drawing with Optional Symmetric Enclosure
36 Figure 5-4. 1U Short Form Factor drawing with Optional Asymmetric Enclosure
37 Figure 6-1. 1C (x4) Mating Card Dimensions
38 Figure 6-2. 2C (x8) Mating Card Dimensions

Tables
42 Table 5-1. 1U Short Form Factor Dimensions
43 Table 5-2. 1U Short Form Factor – Optional Heat Spreader Dimensions
44 Table 5-3. 1U Short Form Factor – Optional Symmetric Enclosure Dimensions
45 Table 5-4. 1U Short Form Factor – Optional Asymmetric Enclosure Dimensions
46 Table 7-1. Power Requirements for a 1U short (E1.S) system implementation
1. Scope

This specification defines the mechanical attributes of a new form factor for a solid state drive that will fit in 1U rack mounted host systems designed to support this form factor.

1.1 Application Specific Criteria

This 1U short form factor provides external dimensions, card edge placement, grounded mechanical mounting hole locations and LED placement to assist host system manufacturers in integration of this form factor.

The environment for the 1U short form factor is an enclosure connecting one or more drives in a restricted packaging environment.

2. References and Conventions

2.1 Industry Documents

The following documents are relevant to this specification:

- ASME Y14.5-2009 Dimensioning and Tolerancing Published by ASME

2.2 Sources

The complete list of SFF documents which have been published, are currently being worked on, or that have been expired by the SFF Committee can be found at http://www.snia.org/sff/specifications. Suggestions for improvement of this specification will be welcome, they should be submitted to http://www.snia.org/feedback.

Copies of ASME standards may be obtained from the American Society of Mechanical Engineers (https://www.asme.org).
2.3 Conventions

The following conventions are used throughout this document:

DEFINITIONS

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

DIMENSIONING CONVENTIONS

The dimensioning conventions are described in ASME-Y14.5, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

NUMBERING CONVENTIONS

The ISO convention of numbering is used (i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point). This is equivalent to the English/American convention of a comma and a period.

<table>
<thead>
<tr>
<th>American</th>
<th>French</th>
<th>ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>1,000</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>1,323,462,9</td>
<td>1 323 462,9</td>
<td>1 323 462,9</td>
</tr>
</tbody>
</table>
3. Keywords, Acronyms, and Definitions

For the purposes of this document, the following keywords, acronyms, and definitions apply.

3.1 Keywords

May/ may not: Indicates flexibility of choice with no implied preference.

Obsolete: Indicates that an item was defined in prior specifications but has been removed from this specification.

Optional: Describes features which are not required by the SFF specification. However, if any feature defined by the SFF specification is implemented, it shall be done in the same way as defined by the specification. Describing a feature as optional in the text is done to assist the reader.

Prohibited: Describes a feature, function, or coded value that is defined in a referenced specification to which this SFF specification makes a reference, where the use of said feature, function, or coded value is not allowed for implementations of this specification.

Reserved: Defines the signal on a connector contact [when] its actual function is set aside for future standardization. It is not available for vendor specific use. Where this term is used for bits, bytes, fields, and code values; the bits, bytes, fields, and code values are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

Restricted: Refers to features, bits, bytes, words, and fields that are set aside for other standardization purposes. If the context of the specification applies the restricted designation, then the restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word, or field (e.g., a restricted byte uses the same value as defined for a reserved byte).

Shall: Indicates a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: Indicates flexibility of choice with a strongly preferred alternative.

Vendor specific: Indicates something (e.g., a bit, field, code value) that is not defined by this specification. Specification of the referenced item is determined by the manufacturer and may be used differently in various implementations.

3.2 Acronyms and Abbreviations

NVM: Non-Volatile Memory

SSD: Solid State Drive
3.3 Definitions

1U: 1 Standard Unit or Rack Unit 44.45 mm (1.75 inches).

Card: Refers to the device plugged into a connector

Device: Refers to the interface slave

Enclosure: The housing that protects the internal components and acts as a heat sink.

Host: Refers to the interface source or master

Thickness: Form factor dimension including PCB thickness, z-height of all components plus mechanicals.
4. General Description

4.1 Configuration Overview/Descriptions

The application environment for the 1U short form factor is a cabinet or enclosure connecting to one or more add-in cards. 1U refers to 1 standard unit of an IT equipment rack and the IT enclosures that fit in this space. The SSD-device form factor is intended for use in enclosures that fit within that given space. The primary usage is for datacenter server and storage systems that require high capacity and performance highly scalable in 1U. The device connects electrically to the system through a card edge connector as defined in SFF-TA-1002. There are multiple thicknesses of the 1U short form factor depending on the max power rating. The definition of mounting holes and component placement area allows for attachment of mechanicals to adapt among different enclosure chassis, such as rails and latching. The form factor is designed not to require a fully enclosed case, but outer dimensions of a case version are included for compatibility if one is desired. Figure 4-1 represents an example of a system implementation using the 1U short form factor.

Figure 4-1. Example system implementations of 1U short form factor.
5. Mechanical Specification

5.1 Overview

This section specifies the dimensions for the 1U short form factor. There are multiple thicknesses specified:

- A PCB form factor with a recommended power rating of 12W
- The form factor with an optional heat spreader and a recommended power rating of 16W
- The form factor with an optional 9.5mm symmetrical enclosure and a recommended power rating of 20W
- The form factor with an optional 15mm or 25mm asymmetric enclosure and a recommended power rating of 25W

All specified mounting holes shall be grounded and mechanical attachment should not exceed radius of defined copper pads. The defined hatched area is component placement area. Unless specified, any labels must be in component placement or optional heat spreader area. No part of the host chassis/guide rails of a host enclosure or parts connected to the mounting holes (e.g., a latch) should encroach into any part of the bounding volume of the device form factor dimensions and tolerances as specified in this standard when the device is inserted into the host enclosure. Unless specified, the default tolerance is +/- 0.15mm. All dimensions provided in mm.

For the label placement and fin area, dimensions for a surface apply to a single point minimum. If a surface is not flat, the dimension applies to the highest raised location on that surface. Except for the card edge connector, each defined edge may have rounding.

The form factors specified in Section 5.2 and Section 5.3 may be used within the enclosures specified in Section 5.4 and 5.5 but is not required. However, the PCB component area shall not be outside of the enclosure area. The PCB with 2C (x8) card edge is not required to meet Section 5.2.

5.2 Physical Definition: 1U Short Form Factor

![Diagram of 1U Short Form Factor](image)

Figure 5-1. 5.9mm Thick 1U Short Form Factor drawing (12W)
5.2.1 1U Short Form Factor

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Tolerance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.9</td>
<td>MAX</td>
<td>Maximum drive thickness (reference)</td>
</tr>
<tr>
<td>A2</td>
<td>2.10</td>
<td>MAX</td>
<td>Maximum component height</td>
</tr>
<tr>
<td>A3</td>
<td>1.57</td>
<td>0.13</td>
<td>PCB Card Edge thickness (ref: see SFF-TA-1002)</td>
</tr>
<tr>
<td>B1</td>
<td>31.5</td>
<td>0.2</td>
<td>Drive height with defined cutouts</td>
</tr>
<tr>
<td>B2</td>
<td>11.23</td>
<td>0.15</td>
<td>Card Bottom Edge to centerline of Datum E</td>
</tr>
<tr>
<td>B3</td>
<td>3.21</td>
<td>0.15</td>
<td>Center of Connector Pin A1 location from PCB (reference)</td>
</tr>
<tr>
<td>C1</td>
<td>111.49</td>
<td>0.15</td>
<td>Add in card Length</td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td>Min</td>
<td>Card edge length. Note if dimension is greater than 7 mm, mounting hole 3 is allowed to be a half-moon</td>
</tr>
<tr>
<td>D1</td>
<td>10.6</td>
<td>0.15</td>
<td>Power and activity (Green) LED center position</td>
</tr>
<tr>
<td>D2</td>
<td>10.6</td>
<td>0.15</td>
<td>Attention or error (Amber) LED center position</td>
</tr>
<tr>
<td>D3</td>
<td>0.5</td>
<td>0.2</td>
<td>Power and activity (Green) LED center position</td>
</tr>
<tr>
<td>D4</td>
<td>0.5</td>
<td>0.2</td>
<td>Attention or error (Amber) LED center position</td>
</tr>
<tr>
<td>D5</td>
<td>110.49</td>
<td>0.45</td>
<td>LED edge closest to latch area</td>
</tr>
<tr>
<td>E1</td>
<td>12.95</td>
<td>BASIC</td>
<td>Mounting hole 1 x position</td>
</tr>
<tr>
<td>E2</td>
<td>2.5</td>
<td>BASIC</td>
<td>Mounting hole 1 y-q and 2 y-q positions</td>
</tr>
<tr>
<td>E3</td>
<td>107.19</td>
<td>BASIC</td>
<td>Mounting hole 2 x position</td>
</tr>
<tr>
<td>E5</td>
<td>8.95</td>
<td>BASIC</td>
<td>Mounting hole 3 x position</td>
</tr>
<tr>
<td>E6</td>
<td>29</td>
<td>BASIC</td>
<td>Mounting hole 3 y-q and 4 y-q positions</td>
</tr>
<tr>
<td>E7</td>
<td>106.19</td>
<td>BASIC</td>
<td>Mounting hole 4 x position</td>
</tr>
<tr>
<td>F1</td>
<td>18.95</td>
<td>0.15</td>
<td>Cutout 1 – 12.8x0.5</td>
</tr>
<tr>
<td>F2</td>
<td>47.15</td>
<td>0.15</td>
<td>Cutout 2 – 8x0.5</td>
</tr>
<tr>
<td>F3</td>
<td>100.69</td>
<td>0.15</td>
<td>Cutout 3 – 10.8x0.5</td>
</tr>
<tr>
<td>F4</td>
<td>22.95</td>
<td>0.15</td>
<td>Cutout 4 – 16.8x0.5</td>
</tr>
<tr>
<td>F5</td>
<td>48.15</td>
<td>0.15</td>
<td>Cutout 5 – 6x0.5</td>
</tr>
<tr>
<td>F6</td>
<td>100.69</td>
<td>0.15</td>
<td>Cutout 6 – 10.8x0.5</td>
</tr>
<tr>
<td>F7</td>
<td>8</td>
<td>0.15</td>
<td>Width of cutout 2</td>
</tr>
<tr>
<td>F8</td>
<td>6</td>
<td>0.15</td>
<td>Width of cutout 5</td>
</tr>
</tbody>
</table>
5.3 Physical Definition: 1U Short Form Factor with Optional Heat Spreader

Figure 5-2. 1U Short Form Factor drawing with heat spreader option *(16W)*

5.3.1 1U Short Form Factor with Optional Heat Spreader

Table 5-2. 1U Short Form Factor – Optional Heat Spreader Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Tolerance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>8.01</td>
<td>0.15</td>
<td>Drive thickness including heat spreader (reference)</td>
</tr>
<tr>
<td>A5</td>
<td>3.22</td>
<td>0.25</td>
<td>PCB to outer thickness for heat spreader option</td>
</tr>
<tr>
<td>J1</td>
<td>16.25</td>
<td>0.15</td>
<td>Heat spreader option 1x position</td>
</tr>
<tr>
<td>J2</td>
<td>103.89</td>
<td>0.15</td>
<td>Heat spreader option 2x position</td>
</tr>
<tr>
<td>J3</td>
<td>12.25</td>
<td>0.15</td>
<td>Heat spreader option 3x position</td>
</tr>
<tr>
<td>J4</td>
<td>102.89</td>
<td>0.15</td>
<td>Heat spreader option 4x position</td>
</tr>
<tr>
<td>J5</td>
<td>110.49</td>
<td>0.15</td>
<td>Heat spreader option 5x position</td>
</tr>
<tr>
<td>K1</td>
<td>3.7</td>
<td>0.15</td>
<td>Heat spreader option 1y position</td>
</tr>
<tr>
<td>K2</td>
<td>5.8</td>
<td>0.15</td>
<td>Heat spreader option 2y position</td>
</tr>
<tr>
<td>K3</td>
<td>5.8</td>
<td>0.15</td>
<td>Heat spreader option 3y position</td>
</tr>
<tr>
<td>K4</td>
<td>25.7</td>
<td>0.15</td>
<td>Heat spreader option 4y position</td>
</tr>
<tr>
<td>K5</td>
<td>25.7</td>
<td>0.15</td>
<td>Heat spreader option 5y position</td>
</tr>
<tr>
<td>K6</td>
<td>27.8</td>
<td>0.15</td>
<td>Heat spreader option 6y position</td>
</tr>
</tbody>
</table>
5.4 Physical Definition: 1U Short Form Factor with Optional Symmetric Enclosure

The PCB excluding the card edge shall not extend past the defined enclosure area. The device defined in the following section supports either the 1C or 2C card edge as defined in SFF-TA-1002. The area conductive to ground may be larger than what is documented.
Notes:
1. Recommendation that host makes grounding contact to 1 of these surfaces.

Figure 5-3. 1U Short Form Factor drawing with Optional Symmetric Enclosure (20W)
5.4.1 1U Short Form Factor with Optional Symmetric Enclosure

Table 5-3. 1U Short Form Factor – Optional Symmetric Enclosure Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Tolerance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6</td>
<td>9.5</td>
<td>0.35</td>
<td>Device Thickness including enclosure</td>
</tr>
<tr>
<td>A7</td>
<td>3.96</td>
<td>0.15</td>
<td>PCB at LED and card edge connector to outer thickness</td>
</tr>
<tr>
<td>A8</td>
<td>0.4</td>
<td>MAX</td>
<td>Straightness</td>
</tr>
<tr>
<td>B4</td>
<td>33.75</td>
<td>0.25</td>
<td>Device width</td>
</tr>
<tr>
<td>B5</td>
<td>4.4</td>
<td>REF</td>
<td>Center - Connector Pin A1 location from Datum X</td>
</tr>
<tr>
<td>B6</td>
<td>12.415</td>
<td>0.35</td>
<td>Control dimension for x4 card edge; TA-1002 DATUM “E”</td>
</tr>
<tr>
<td>B7</td>
<td>0.4</td>
<td>MAX</td>
<td>Straightness</td>
</tr>
<tr>
<td>B8</td>
<td>23.75</td>
<td>0.25</td>
<td>Label/Fin placement region</td>
</tr>
<tr>
<td>B9</td>
<td>5</td>
<td>REF</td>
<td>Host alignment structure region (reference)</td>
</tr>
<tr>
<td>B10</td>
<td>22.605</td>
<td>0.35</td>
<td>Control dimension for x8 card edge; TA-1002 DATUM “F”</td>
</tr>
<tr>
<td>B11</td>
<td>11.79</td>
<td>0.35</td>
<td>Datum “W” to LED center position</td>
</tr>
<tr>
<td>C3</td>
<td>118.75</td>
<td>0.55</td>
<td>Device length</td>
</tr>
<tr>
<td>C4</td>
<td>112.5</td>
<td>+0.15/-0.95</td>
<td>Datum “G” to latch area keep out zone</td>
</tr>
<tr>
<td>C5</td>
<td>12</td>
<td>MIN</td>
<td>Minimum Conductive area length</td>
</tr>
<tr>
<td>C6</td>
<td>35</td>
<td>0.15</td>
<td>Bottom conductive area 1 x position</td>
</tr>
<tr>
<td>C7</td>
<td>3.2</td>
<td>MIN</td>
<td>Bottom conductive area length</td>
</tr>
<tr>
<td>C8</td>
<td>7.5</td>
<td>0.25</td>
<td>Datum “YG” to Datum “T” (edge of enclosure)</td>
</tr>
<tr>
<td>D6</td>
<td>110.49</td>
<td>0.45</td>
<td>LED edge closest to latch area</td>
</tr>
<tr>
<td>D7</td>
<td>2.07</td>
<td>0.48</td>
<td>Green LED center position</td>
</tr>
<tr>
<td>D8</td>
<td>0.5</td>
<td>0.35</td>
<td>Amber LED center position</td>
</tr>
<tr>
<td>E8</td>
<td>3.55</td>
<td>BASIC</td>
<td>Mounting Hole 1 y-g position</td>
</tr>
<tr>
<td>E9</td>
<td>30.05</td>
<td>BASIC</td>
<td>Mounting Hole 2 y-g position</td>
</tr>
<tr>
<td>E10</td>
<td>108</td>
<td>BASIC</td>
<td>Mounting Hole 1 x and 2 x position</td>
</tr>
<tr>
<td>E11</td>
<td>2.7</td>
<td>0.15</td>
<td>Mounting Thru Hole Diameter</td>
</tr>
<tr>
<td>E12</td>
<td>4.7</td>
<td>0.15</td>
<td>Mounting Counterbore Diameter</td>
</tr>
<tr>
<td>E13</td>
<td>1.2</td>
<td>0.1</td>
<td>Mounting Counterbore Depth</td>
</tr>
<tr>
<td>E14</td>
<td>0.25</td>
<td>MAX</td>
<td>Position Tolerance</td>
</tr>
<tr>
<td>E15</td>
<td>2.2</td>
<td>0.15</td>
<td>Latch mounting area thickness</td>
</tr>
<tr>
<td>E16</td>
<td>115.5</td>
<td>REF</td>
<td>Card Edge to Mounting Hole 1 x and 2 x Position</td>
</tr>
</tbody>
</table>
5.5 Physical Definition: 1U Short Form Factor with Optional Asymmetric Enclosure

Unless specified in Table 5-4, Dimensions are the same as in Table 5-3. There are two thicknesses denoted in Table 5-4. The PCB excluding the card edge shall not extend past the defined enclosure area. The device defined in the following section supports either the 1C or 2C card edge as defined in SFF-TA-1002. The area conductive to ground may be larger than what is documented.
Notes:

1. Recommendation that host makes grounding contact to at least 1 of these surfaces at the front of the device.

Figure 5-4. 1U Short Form Factor drawing with Optional Asymmetric Enclosure
5.5.1 1U Short Form Factor with Optional Asymmetric Enclosure

Table 5-4. 1U Short Form Factor – Optional Asymmetric Enclosure Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Tolerance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9a</td>
<td>25</td>
<td>+0.35/-0.60</td>
<td>Device Thickness including thick enclosure (25 mm)</td>
</tr>
<tr>
<td>A10a</td>
<td>19.46</td>
<td>REF</td>
<td>PCB to outer thickness with Heatsink (25 mm)</td>
</tr>
<tr>
<td>A9b</td>
<td>15</td>
<td>+0.35/-0.60</td>
<td>Device Thickness including thick enclosure (15 mm)</td>
</tr>
<tr>
<td>A10b</td>
<td>9.46</td>
<td>REF</td>
<td>PCB to outer thickness with Heatsink (15 mm)</td>
</tr>
</tbody>
</table>
6. Informative: SFF-TA-1002 edge (plug) Mechanical drawing

6.1 Overview

This section shows the card edge mechanical drawing for convenience only. See SFF-TA-1002 for normative and performance requirements.

Figure 6-1. 1C (x4) Mating Card Dimensions

Figure 6-2. 2C (x8) Mating Card Dimensions

The following section covers the power and thermal requirements of the device.

7.1 Power

Table 7-1 defines the initial slot power limit for the device. For more details about this and other power requirements, refer to SFF-TA-1009 Enterprise and Datacenter Standard Form Factor Pin and Signal Specification.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E1.S</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Slot Power Limit (12Vpinit)</td>
<td>25 W</td>
<td>Refer to SFF-TA-1009 for definition</td>
</tr>
</tbody>
</table>

7.2 Thermals

For detailed device thermal requirements, refer to SFF-TA-1023 Thermal Specification for EDSFF Devices.

7.1 Overview

The following thermal guidelines are provided to assist in the storage subsystem implementation of the EDSFF 1U short form factor specification. An example implementation is shown in Figure 7-1. In this example, there are 24 add-in cards with 2 different thicknesses connected to a midplane with fans pulling air across the add-in cards. Each add-in card plugs into a connector that is mounted onto the midplane.

![Figure 7-1. Example implementation of 1U short add in cards in an enclosure (Top View)]

There are 5 thickness considered for 1U short add in cards: bare PCB at 5.9mm thickness, bare PCB with optional heat spreader at 8.01mm thickness, a fully enclosed device at 9.5mm thickness, a fully enclosed device at 15mm thickness, and a fully enclosed device at 25mm thickness. The heat spreader makes it easier for a system provider to have a common surface such that a heat sink can be attached for additional thermal dissipation. The fully enclosed drives are for a higher operating thermal envelope among other things. As a reference, the connector can support up to a 70W device. To prevent the add in cards from throttling or overheating, system guidelines for both with and without heat spreader add in cards are provided in Table 7-1.

Copyright © 2020 SNIA. All rights reserved.
Table 7-1. Thermal guidelines for a 1U short system implementation

<table>
<thead>
<tr>
<th>Enclosure Parameter</th>
<th>5.9mm Device with Heat Spreader (8.01mm)</th>
<th>Device with Symmetric Enclosure (9.5mm)</th>
<th>Device with Asymmetric Enclosure (15mm)</th>
<th>Device with Asymmetric Enclosure (25mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended sustained power (W)</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Touch point Temperature limit (°C)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Enclosure Max Inlet air temperature, < 950 m (°C)</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Enclosure Max Inlet air temperature, 950 m to 3050 m (°C)</td>
<td>35 – (1° C for 175 m of elevation gain)</td>
<td>35 – (1° C for 175 m of elevation gain)</td>
<td>35 – (1° C for 175 m of elevation gain)</td>
<td>35 – (1° C for 175 m of elevation gain)</td>
</tr>
<tr>
<td>Add-in card to add in card pitch (mm)</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Recommended Fan Pressure loss across device (Pascal)</td>
<td>83</td>
<td>52</td>
<td>64</td>
<td>40</td>
</tr>
<tr>
<td>Airflow, average min per device (CFM). 1 CFM = 1.7 m³/h</td>
<td>1.41 – (0.01 CFM for every 1° C below 35° C inlet temp)</td>
<td>1.71 – (0.06 CFM for every 1° C below 35° C inlet temp)</td>
<td>2.02 – (0.02 CFM for every 1° C below 35° C inlet temp)</td>
<td>1.5 – (0.02 CFM for every 1° C below 35° C inlet temp)</td>
</tr>
</tbody>
</table>