DRAFT SFF-TA-1015 Rev 0.0.4<u>5</u>

SNIA
SFF TWG
Technology Affiliate

SFF-TA-1015

Specification for

Fabric Device Pinout Specification

Rev 0.0.4 October 17, 20185 January 14, 2019

SECRETARIAT: SFF TA TWG

 This specification is made available for public review at http://www.snia.org/sff/specifications. Comments may be submitted at http://www.snia.org/feedback. Comments received will be considered for inclusion in future revisions of this specification.

The description of the connector in this specification does not assure that the specific component is available from connector suppliers. If such a connector is supplied, it must comply with this specification to achieve interoperability between suppliers.

ABSTRACT: This specification defines the Fabric Device signal list, connector pinout and VPD EEPROM definition.

POINTS OF CONTACT:

TC McNally
Western Digital Corporation
9950 Federal Drive
Suite 100
Colorado Springs, CO 80921
Ph: 719-799-4623
Email: todd.mcnally@wdc.com

Chairman SFF TA TWG Email: <u>SFF-Chair@snia.orq</u> Style Definition: Heading 2: Space Before: 6 pt, After: 6

Fabric Device Pinout Specification

 $\mbox{Page 1} \label{eq:page 1} \mbox{Copyright $\textcircled{\odot}$ 2018 SNIA. All rights reserved.}$

15

16

21 22 **Intellectual Property** The user's attention is called to the possibility that implementation of this specification may require the use of an

invention covered by patent rights. By distribution of this specification, no position is taken with respect to the validity of a claim or claims or of any patent rights in connection therewith.

This specification is considered SNIA Architecture and is covered by the SNIA IP Policy and as a result goes through a request for disclosure when it is published. Additional information can be found at the following locations:

Results of IP Disclosures: http://www.snia.org/sffdisclosures

SNIA IP Policy: http://www.snia.org/ippolicy

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

- Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
- Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing copyright request@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA's receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Foreword The development work on this specification was done by the SNIA SFF TWG, an industry group. Since its formation as the SFF Committee in August 1990, the membership has included a mix of companies which are leaders across

For those who wish to participate in the activities of the SFF TWG, the signup for membership can be found at http://www.snia.org/sff/join

Revision History

Rev 0.0.1	October 12, 2018.
	-Initial release of document
	-Description
Rev 0.0.3	October 15, 2018:
	-Internal review
	-Description
Rev 0.0.4	October 17, 2018:

-Internal review

-Initial release to greater Audience.

Rev 0.0.5 January 14, 2019: Editorial updates

DRAFT SFF-TA-1015 Rev 0.0.4<u>5</u>

Table of Contents

2	1.	— Scope	 7
3	2	References and Conventions	7
4	2.	2.1 — Industry Documents	7
5		2.2 Sources	
_			•
6		2.3 Conventions	8
7	3.	Keywords, Acronyms, and Definitions	——9
8		3.1—Keywords	 9
9		3.2 Acronyms and Abbreviations	 9
10		3.3—Definitions	 10
		Cignal Liet	
11	4.		10
12		4.1 Power and Grounds	 12
13		4.2—High Speed Ports	——12
14		4.3 Low Speed Interface	——12
15		4.3.1—PORT_A/B_MODSEL	 13
16		4.3.2—PORT_A/B_RESETL	 13
17		4.3.3 PORT_A/B_3V3	 13
18		4.3.4—PORT A/B SCL	 13
19		4.3.5—Port A/B SDA	—— <u>1</u> 3
20		4.3.6—PORT A/B LPMODE	——13
21		4.3.7—PORT_A/B_INTL	——13
22		4.3.8—PORT A/B MODPRSL	——13 ——13
23		4.4—Fabric Status LED	——13 ——13
23		4.5—12C Interface	——13 ——13
25		4.6 UART Interface	1 3
26		4.7 Fabric Device Status LEDs	13
27		4.8—Management	 14
28		4.8.1—INT_L_OUT	 14
29		4.8.2—PWR_EN_IN	——14
30		4.8.3—PWR_OK_L_IN	 14
31		4.8.4 AC_OK_L	 14
32		4.8.5—SYS_ALIVE_H_IN	 14
33		4.8.6 RESET_L_IN	 14
34		4.8.7 SGMII Interface	 14
35		4.9 GPIO	14
36		4.10 JTAG	 14
37		4.11 Slot Address	14
38		4.12 Present	14
39		4.13 Reserved	14
33		1.15—Nescived	11
40	5.	Connector Pinout Definition	 14
41	6.	—VPD Contents	 16
42		6.1 Initial Power	 18
43		6.2 Operational Power	 18
44		6.3 Power Hold Up	—— <u>1</u> 8
45		6.4—Capability List	 18
46		6.5—Standard Capability Data Structure	—— <u>1</u> 9
47		6.6—Vendor Specific Capability Data Structure	—— <u>1</u> 9
'			
48	7.	— Dynamic Data	 19
49	1.	Scope	7

DRAFT SFF-TA-1015 Rev 0.0.4<u>5</u>

1	2.	References and Conventions	7
2		2.1 Industry Documents	7
3		2.2 Sources	7
4		2.3 Conventions	8
5	2	Keywords, Acronyms, and Definitions	9
6	<u>3.</u>	3.1 Keywords	9
7		3.2 Acronyms and Abbreviations	9
8		3.3 Definitions	9
U		5.5 Definitions	10
9	4.		10
10		4.1 Power and Grounds	12
11		4.2 High Speed Ports	12
12		4.3 Low Speed Interface	12
13		4.3.1 PORT A/B MODSEL	13
14		4.3.2 PORT A/B RESETL	13
15		4.3.3 PORT A/B 3V3	13
16		4.3.4 PORT A/B SCL	13
17		4.3.5 Port A/B SDA	13
18		4.3.6 PORT A/B LPMODE	13
19		4.3.7 PORT_A/B_INTL	13
20		4.3.8 PORT_A/B_MODPRSL	13
21		4.4 Fabric Status LED	13
22		4.5 I2C Interface	13
23		4.6 UART Interface	13
24		4.7 Fabric Device Status LEDs	13
25		4.8 Management	14
26		4.8.1 INT L OUT	14
27		4.8.2 PWR_EN_IN	14
28		4.8.3 PWR OK L IN	14
29		4.8.4 AC OK L	14
30		4.8.5 SYS ALIVE H IN	14
31		4.8.6 RESET L IN	14
32 33		4.8.7 SGMII Interface 4.9 GPIO	14
33 34		4.10 JTAG	14
3 4 35		4.11 Slot Address	14 14
36		4.12 Present	17 14
37		4.13 Reserved	17 14
37		1.13 Reserved	
38	5.	Connector Pinout Definition	14
39	<u>6.</u>		16
40		6.1 Initial Power	18
41		6.2 Operational Power	18
42		6.3 Power Hold Up	18
43		6.4 Capability List	18
44		6.5 Standard Capability Data Structure	19
45		6.6 Vendor Specific Capability Data Structure	19
46	7.	Dynamic Data	19
47	<u> </u>	- Indiana - State	
48			

DRAFT	SFF-TA-1015 Rev 0.0.4 <u>5</u>

1	Table of Figures	
2	No table of Figures entries found.	
3		
4	Table of Tables	
5	Table 4 1 Signal List	1
6	Table 5 1 Fabric Device Connector Pinout	1
7	Table 6-1 Vital Product Data	1
8	Table 6-2: Device Classes	1
9	Table 6-3: Storage Subclasses	1
10	Table 6-4: Compute Subclasses	1
11	Table 6 5: Memory Subclasses	1
12	Table 6-6: Power Storage Subclasses	1
13	Table 6 7: Protocols	1
14	Table 6 8: Active Ports	1
15	Table 6 9: Link Speeds	1
16	Table 6 10 I2C Standard Capability Data Structure	1
17	Table 6-11 I2C Vendor Specific Capability Data Structure	1
18	Table 4-1 Signal List	1
19	Table 5-1 Fabric Device Connector Pinout	1
20	Table 6-1 Vital Product Data	1
21	Table 6-2: Device Classes	1
22	Table 6-3: Storage Subclasses	1
23	Table 6-4: Compute Subclasses	1
24	Table 6-5: Memory Subclasses	1
25	Table 6-6: Power Storage Subclasses	1
26	Table 6-7: Protocols	1
27	Table 6-8: Active Ports	1
28	Table 6-9: Link Speeds	1
29	Table 6-10 I2C Standard Capability Data Structure	1
30	Table 6-11 I2C Vendor Specific Capability Data Structure	1
31		

DRAFT SFF-TA-1015 Rev 0.0.45

1. Scope

This specification defines the Fabric Device Pinout Specification. This document convers the signal list, signal definitions and connector pinout.

2. References and Conventions

2.1 Industry Documents

5 6 8

9

10 11

12

15

16

17

18 19 20

21

22 23

24

27

- ENG-46158 Serial-GMII Specification

IEEE Standard Test Access Port and Boundary-Scan Architecture - IEEE Std 1149.1

Cross Reference to Select SFF Connectors - REF-TA-1011 - SFF-8679 QSFP+ 4X Hardware and Electrical Specification - SFF-TA-1014 Fabric Attached Devices Connector Specification - SPRUGP1 Universal Asynchronous Receiver/Transmitter (UART) - UM10204 I2C-bus Specification and user manual

13

2.2 Sources

The complete list of SFF documents which have been completed, are currently being worked on, or that have been expired by the SFF Committee can be found at http://www.snia.org/sff/specifications. Suggestions for improvement of this specification will be welcome, they should be submitted to http://www.snia.org/feedback.

Copies of ANSI standards may be obtained from the InterNational Committee for Information Technology Standards (http://www.techstreet.com/incitsgate.tmpl).

Copies of PCIe standards may be obtained from PCI-SIG (http://pcisig.com).

25 26

Copies of InfiniBand standards may be obtained from the InfiniBand Trade Association (IBTA) (http://www.infinibandta.org).

Copies of IEEE standards may be obtained from the Institute of Electrical and Electronics Engineers (IEEE) (https://www.ieee.org).

Copies of SAS standards may be obtained from the International Committee for Information Technology Standards (INCITS) (http://www.incits.org).

Copies of JEDEC standards may be obtained from the Joint Electron Device Engineering Council

Copies of ASME standards may be obtained from the American Society of Mechanical Engineers

37 38 39 Copies of OIF Implementation Agreements may be obtained from the Optical Internetworking Forum (http://www.oiforum.com).

(https://www.asme.org). Copies of Electronic Industries Alliance (EIA) standards may be obtained from the Electronic Components Industry

44 45 46

Association (ECIA) (https://www.ecianow.org).

2.3 Conventions

The following conventions are used throughout this document:

DEFINITIONS

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

LISTS

5

6 7 8

9

10

11

12 13

14 15

16 17

18

19

20

21

22 23

24 25 26

27 28

29 30

31

32 33

34 35

36

37 38

39

40

41

Lists sequenced by lowercase or uppercase letters show no ordering relationship between the listed items.

EXAMPLE 1 - The following list shows no relationship between the named items:

- a. red (i.e., one of the following colors):
 - A. crimson; or
 - B. pink;
- b. blue; or
- c. green.

Lists sequenced by numbers show an ordering relationship between the listed items.

EXAMPLE 2 -The following list shows an ordered relationship between the named items:

- 1. top;
- 2. middle; and
- 3. bottom.

Lists are associated with an introductory paragraph or phrase, and are numbered relative to that paragraph or phrase (i.e., all lists begin with an a. or 1. entry).

DIMENSIONING CONVENTIONS

The dimensioning conventions are described in ASME-Y14.5, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

NUMBERING CONVENTIONS

The ISO convention of numbering is used i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point. This is equivalent to the English/American convention of a comma and a period.

American	French	ISO
0.6	0,6	0.6
1,000	1 000	1 000
1,323,462.9	1 323 462,9	1 323 462.9

3. Keywords, Acronyms, and Definitions

For the purposes of this document, the following keywords, acronyms, and definitions apply.

3.1 Keywords

 May/ may not: A keyword that indicates flexibility of choice with no implied preference.

Obsolete: A keyword indicating that an item was defined in prior specifications but has been removed from this specification.

Optional: A keyword that describes features which are not required by the SFF specification. However, if any feature defined by the SFF specification is implemented, it shall be done in the same way as defined by the specification. Describing a feature as optional in the text is done to assist the reader.

Prohibited: A keyword used to describe a feature, function, or coded value that is defined in a referenced specification to which this SFF specification makes a reference, where the use of said feature, function, or coded value is not allowed for implementations of this specification.

Reserved: A keyword used for defining the signal on a connector contact [when] its actual function is set aside for future standardization. It is not available for vendor specific use. Where this term is used for bits, bytes, fields, and code values; the bits, bytes, fields, and code values are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

Restricted: A keyword referring to features, bits, bytes, words, and fields that are set aside for other identified standardization purposes. A restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word or field in the context where the restricted designation appears.

Shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: A keyword indicating flexibility of choice with a strongly preferred alternative.

Vendor specific: A keyword indicating something (e.g., a bit, field, code value) that is not defined by this specification. Specification of the referenced item is determined by the manufacturer and may be used differently in various implementations.

3.2 Acronyms and Abbreviations

RO: Read Only **RX:** Receiver **TX:** Transmitter **VPD:** Vital Product Data 3.3 Definitions

Module: In this specification, module refers to an assembly that is terminated at the end of a direct attach copper (DAC) or an active optical cable (AOC), intended to mate to a device.

Termination: A term used to describe a connector's non-separable attachment point such as [a connector contact to a bulk cable/ a cage to a PCB or flex circuit/ bulk cable to a PCB or flex circuit/ solder tail to PCB]. Common PCB terminations include: surface mount (SMT), plated through hole termination (PTH), and press fit (PF). Common cable terminations include insulation displacement contact (IDC), insulation displacement termination (IDT), wire slots, solder, welds, crimps, and brazes.

4. Signal List

The signal summary, definitions and signal placement for the Fabric Device connector are detailed in this section. All signals listed are presented relative to the Fabric Device, IN is an input to the Fabric Device, OUT is an output from the Fabric Device, RX is an input to the Fabric Device and TX is an output from the Fabric Device.

Table 4-1 Signal List

Table + 1 Sig	Tan Eist		
Interface	Signal Name	Fabric Device I/O	Function
Power and	12V	I	12V Source
Ground	GND	I	Return Current Path
	PORT_BA_1P_IN	I	
	PORT_BA_1N_IN	I	
	PORT_BA_2P_IN	I	
	PORT_BA_2N_IN	I	Port BA High Speed Data differential inputs
	PORT_BA_3P_IN	I	Tore by riight speed batt directed inputs
	PORT_BA_3N_IN	I	
	PORT_BA_4P_IN	I	
	PORT_BA_4N_IN	I	
	PORT_AB_1P_IN	I	
High Speed	PORT_AB_1N_IN	I	
Data	PORT_AB_2P_IN	I	
	PORT_AB_2N_IN	I	Port AB High Speed Data differential inputs
	PORT_AB_3P_IN	I	
	PORT_AB_3N_IN	I	
	PORT_AB_4P_IN	I	
	PORT_AB_4N_IN	I	
	PORT_BA_1P_OUT	0	
	PORT_BA_1N_OUT	0	
	PORT_ B A_2P_OUT	0	Port BA High Speed Data differential outputs
	PORT_ B A_2N_OUT	0	
	PORT BA 3P OUT	0	

Formatted Table

Formatted: Not Highlight

Formatted: Font: Calibri, 12 pt, Font color: Black

Table 4-1 Signal List	Tab	le	4-1	Sign	al I	List
-----------------------	-----	----	-----	------	------	------

Table 4-1 Sigi	nal List		
	PORT_BA_3N_OUT	0	
	PORT_BA_4P_OUT	0	
	PORT_BA_4N_OUT	0	
	PORT_AB_1P_OUT	0	
	PORT_AB_1N_OUT	0	
	PORT_AB_2P_OUT	0	
	PORT_AB_2N_OUT	0	Port AB High Speed Data differential outputs
	PORT_AB_3P_OUT	0	Fort AD Flight Speed Data differential outputs
	PORT_AB_3N_OUT	0	
	PORT_AB_4P_OUT	0	
	PORT_AB_4N_OUT	0	
	PORT_A_MODSEL	0	Port A QSFP Mode Select output
	PORT_A_RESETL	0	Port A QSFP Reset output
	PORT_A_I2C_SCL	0	Port A QSFP Serial Clock
	PORT_A_I2C_SDA	I/O	Port A QSFP Serial Data
	PORT_A_LPMODE	0	Port A QSFP Low Power Mode output
	DODT 4 31/3		Port A VccRx, VccTx, andr Vcc1 to be filtered
	PORT_A_3V3	Pwr I	individually if needed
Law Casad	PORT_A_INTL PORT_A_MODPRSL	I	Port A QSFP Interrupt Port A QSFP Module Present input
Low Speed Interface	PORT_B_MODSEL	0	Port B QSFP Mode Select output
	PORT_B_RESETL	0	Port B QSFP Reset output
	PORT_B_I2C_SCL	0	Port B QSFP Serial Clock
	PORT_B_I2C_SDA	I/O	Port B QSFP Serial Data
	PORT B LPMODE	0	Port B QSFP Low Power Mode output
	10111_5_2111052		Port B VccRx, VccTx, and Vcc1 to be filtered
	PORT_B_3V3	Pwr	individually if needed
	PORT_B_INTL	I	Port B QSFP Interrupt
	PORT_B_MODPRSL	I	Port B QSFP Module Present input
	PORT_A_LNK_LED	0	Port A Link LED
Fabric Status	PORT_A_ACT_LED	0	Port A Activity LED
LED	PORT_B_LNK_LED	0	Port B Link LED
	PORT_B_ACT_LED	0	Port B Activity LED
I2C Interface	I2C_SCL	I	I2C clock input
	I2C_SDA	I/O	I2C data
UART	UART_TX	0	UART transmit data
	UART_RX	I	UART receive data
	OK_LED_IN	I	OK LED input
Device LEDs	ID_LED_IN	I	ID LED input
	FLT_LED_IN	I	FAULT LED input
Management	INT_L_OUT	0	Interrupt active low output

Fabric Device Pinout Specification

 $\label{eq:page 11} \mbox{Copyright $\textcircled{$\odot$}$ 2018 SNIA. All rights reserved.}$

Formatted Table

Formatted: Font: Calibri, 12 pt, Font color: Black

Formatted Table

Formatted: Font: Calibri, 12 pt, Font color: Black

Table 4-1 Signal List

Table 4-1 Sigi	Table 4-1 Signal List							
	PWR_EN_IN	I	Power Enable input					
	PWR_OK_L_IN	I	Power OK input					
	AC_OK_L	I	Source power is OK					
	SYS_ALIVE_H_IN	I	Indicator from management controller that system is alive					
	RESET_L_IN	I	Reset active low input					
	SGMII_P_OUT	0						
	SGMII_N_OUT	0	Ethernet Management port differiential outputs					
	SGMII_P_IN	I	Ethernet Management port differiential inputs					
	SGMII_N_IN	I	Ethernet Management port differential inputs					
GPIO	GPIO_0	I/O	General purpose I/O					
GFIO	GPIO_1	I/O	General purpose I/O					
	JTAG_TDI	I	Test Data In					
	JTAG_TDO	0	Test Data Out					
JTAG	JTAG_TMS	I	Test Mode Select					
	JTAG_TCK	I	Test Clock					
	JTAG_TRSTN	I	Test Reset active low					
	SLOT_0_IN	I						
Slot Address	SLOT_1_IN	I	System assigns a slot number (0x0 thru 0xF) to					
Siot Address	SLOT_2_IN	I	each device Device					
	SLOT_3_IN	I						
	PRSNT_L	0	Idndicates the Fabric Device is present. Pulled low through a 1000hm resistor on Fabric Device.					
Present			Indicates the Fabric Device is a blank					
	BLANK PRSNTPRESENT L	0	nonoperational device. Device. Pulled low through a 1000hm resistor on Fabric Device					
Danis	RESERVED2RESERVED1	I/O						
Reserved	RESERVED3 PESERVED3	I/O						

4.1 Power and Grounds

The Fabric Device supports a 12V power source to power all circuitry on the deviceDevice. The 12V rails is expected to be powered at all times while the Fabric Device is inserted in the system.

4.2 High Speed Ports

- The high speed fabric interface provides two (2), four (4) lane ports for external connectivity. The external connectivity is defined by the specific device Device and will have connectivity according to the enclosure the
- 8 deviceDevice is inserted into. These ports consist of two (2) differential ports each, one for Tx and one for Rx.
- 9 PORT_A/B*P/N_IN pair is defined as an input to the Fabric Device
- 10 PORT_A/B*P/N_OUT pair is defined as an output from the Fabric Device

11 4.3 Low Speed Interface

- 12 The low speed interface signals combine with Fabric interfaces for cables<u>cabled</u> systems, these signals will have
- connectivity according to the enclosure the device Device is inserted into. All signals listed in this section shall follow
- electrical specifications defined in SFF-8679.

Fabric Device Pinout Specification

Page 12

Copyright © 2018 SNIA. All rights reserved.

DRAFT SFF-TA-1015 Rev 0.0.45

1 4.3.1 PORT_A/B_MODSEL

- 2 Port A and B ModSelL is an active low signal and is used by the Fabric Device to enable communication on the 2-
- wire serial bus of the module.

4 4.3.2 PORT_A/B_RESETL

Port A and B RESETL is an active low signal and is used by the Fabric deviceDevice to reset the module.

6 4.3.3 PORT_A/B_3V3

- 7 Port A and B 3.3V is a power source to the module plugged into connected to the enclosure, these 3.3V source pins
 - are all connected to the same power source within the Fabric Device.
- 9 4.3.4 PORT A/B SCL
- 10 Port A and B 2-wire serial interface clock. The port 2-wire interface is defined in SFF-8679. The Fabric device Device
- does not provide a pullup on this signal.
- 12 4.3.5 Port A/B SDA
- 13 Port A and B 2-wire serial interface data signal. The port 2-wire interface is defined in SFF-8679. The Fabric
- 14 device Device does not provide a pullup on this signal.
- 15 **4.3.6 PORT_A/B_LPMODE**
- 16 Port A and B low power mode hardware control pin to be used in combination with fabric connections. LPMODE is
- an active high signal and is defined by SFF-8679.
- 18 **4.3.7 PORT_A/B_INTL**
- 19 Port A and B INTL is an active low interrupt output from the fabric cable possibly indicating a module operation
- 20 fault. The Fabric Device identifies the fault using the 2-wire interface.
- 21 4.3.8 PORT_A/B_MODPRSL
- 22 Port A and B module present is an active low output from the fabric cable indicating a module present.
- 23 4.4 Fabric Status LED
- 24 Fabric Status LEDs for both the A and B:
- 25 PORT_A_LNK_LED drives the port A link LED on the fabric connector.
- 26 PORT_A_ACT_LED drives the port A activity LED on the fabric connector.
- 27 PORT_B_LNK_LED drives the port B link LED on the fabric connector.
- 28 PORT_B_ACT_LED drives the port B activity LED on the fabric connector.
- 29 These LEDs are defined by the specific fabric operation of the Fabric Device.
- 30 4.5 I2C Interface
- 31 This I2C is a standard 2-wire serial interface following I2C-bus specification for low speed out of band management
- 32 of the Fabric deviceDevice. This 2-wire serial interface must have a Fabric Device VPD EEPROM at I2C address
- 33 0xA0 and a general purpose device at address 0x60 defined by Fabric Device vendor.
- 34 4.6 UART Interface
- 35 The UART interface to the Fabric deviceDevice is a low-level debug interface that may be connected to any
- intelligent part of the device Device that requires access to a UART from the enclosure.
- 37 4.7 Fabric Device Status LEDs
- 38 The Fabric Device status LEDs are optional LEDS on the fabric device itselfFabric Device that can be driven by the
- 39 device Device itself or from the enclosure. These are inputs to the Fabric Device and have internal 10k pulldown
- 40 resistors.
- 41 OK_LED_IN is a green LED indicating the Fabric deviceDevice is OK
- 42 ID_LED_IN is a blue LED identifying the Fabric deviceDevice.
- 43 FLT_LED_IN is an amber LED indicating the Fabric deviceDevice has a fault of some sort.

DRAFT SFF-TA-1015 Rev 0.0.45 4.8 Management The management interface for the Fabric device pevice is primarily over the 1G SGMII interface. 3 INT L OUT Formatted: Heading 2 Interrupt out is an active low signal to the enclosure from the Fabric Device. **PWR EN IN** Formatted: Heading 2 Power enable input is an active high signal to the device Device used by the enclosure to allow full power operation 6 on the Fabric deviceDevice. The deviceDevice shall not consume more than 5 Watts of power while PWR_EN_IN 7 8 is logic low. 9 Formatted: Heading 2 4.8.34.11 PWR_OK_L_IN 10 Power OK is an active low signal from the enclosure power supplies indicating the power from the PSUs is OK 11 12 AC OK is an active low signal from the enclosure power supplies indicating the AC to the power supplies is OK 4.8.54.11.2 SYS_ALIVE_H_IN 13 14 System alive is an active high input to the Fabric deviceDevice indicating the system is OK. 15 4.8.64.11.3 RESET_L_IN 16 Reset in is an active low signal used by the enclosure to reset the fabric device. Fabric Device. Reset has an internal 17 10kOhm pullup to 3.3V 18 **SGMII Interface** 19 The SGMII port is the primary management interface into the Fabric Device. This interface follows the specification 20 defined in ENG-46158. 21 4.94.12 _GPIO There are two GPIO signals on the connector for the Fabric Device, these two signals are marked as reserved. 22 23 4.104.13 The JTAG interface follows standard IEEE1149 with the chain inside the Fabric deviceDevice. This interface should 24 be used for any components that get reprogrammed via JTAG. 26 4.114.14 Slot Address 27 The 4 bits of slot address indicate to the Fabric deviceDevice what slot in an enclosure it is installed in. 28 4.124.15 Present 29 PRSNT_L is an active low signal that indicates the Fabric Device is present in the system. This signal shall be pulled 30 to ground through a 1000hm resistor on the Fabric Device. BLANK_PRSNT_L is an active low signal to indicate that the Fabric Device is a blank deviceDevice and does not 31 32 have any functionality. This signal shall be pulled to ground through a 1000hm resistor on the Fabric Device. 33 Reserved 34 There are two (2) reserved pins for future use of Fabric Devices. 35 5. Connector Pinout Definition 36

Fabric Device Pinout Specification

37

Page 14 Copyright © 2018 SNIA. All rights reserved.

Table 5-1 Fabric Device Connector Pinout

	8	7	6	5	4	3	2	4	
т		GND		GND	•	GND		GND	-
	AC_OK_L	PORT_A_2N_O	PWR_OK_L_IN	PORT_A_1N_O	UART_RX	PORT B 2N O	UART_TX	PORT_B_1N_O	
S	GND	UT	GND	UT	GND	UT	GND	UT	S
	PORT A 4N O	PORT_A_2P_O	PORT_A_3N_OU	PORT A 1P O	PORT_B_4N_OU	PORT B 2P O	PORT B 3N O	PORT B 1P O	
R	UT	UT		UT		UT	UT	UT	R
	PORT_A_4P_O		PORT_A_3P_OU		PORT_B_4P_OU		PORT_B_3P_O		
Q	UT	GND	T	GND	T	GND	UT	GND	Q
P	GND	PORT_A_2N_I	GND	PORT_A_1N_I	CND	DODT D ON IN	CND	PORT_B_1N_I	P
Р	PORT_A_4N_I	N PORT_A_2P_I	GND	N	GND	PORT_B_2N_IN	GND PORT_B_3N_I	N PORT_B_1P_I	P
0	N	N	PORT A 3N IN	PORT A 1P IN	PORT B 4N IN	PORT B 2P IN	N	N	0
	PORT A 4P I	14	101(1_7(_51(_1)(TORT_/(_ITIR	TORT_B_III_III	TORT_B_ZI_IN	PORT B 3P I	14	
N	N	GND	PORT_A_3P_IN	GND	PORT_B_4P_IN	GND	N	GND	N
				PORT_B_RESE		PORT_A_RESET			
М	GND	JTAG_TRSTN	GND	TL	GND	L	GND	12V	M
	CLOT 2 IN	3T.A.C. T.C.I.	PORT_B_MODP	PORT_B_MODS	PORT_A_MODP	PORT_A_MODS	120 004	4217	
	SLOT_3_IN	JTAG_TCK	RSL	EL	RSL	EL	I2C_SDA	12V	L
K	SLOT_2_IN	GND	PORT_B_INTL	GND	PORT_A_INTL	GND	I2C_SCL	GND	K
J	GND	JTAG_TMS	GND	RESERVED2	GND	FLT_LED_IN	GND	12V	J
Ι	SLOT_1_IN	JTAG_TDO	PORT_B_3V3	RESERVED1	PORT_A_3V3	ID_LED_IN	12V	12V	I
н	SLOT_0_IN	GND	PORT_B_3V3	GND	PORT_A_3V3	GND	12V	GND	Н
G	GND	JTAG_TDI	GND	PRSNT_L	GND	OK_LED_IN	GND	12V	G
		SYS_ALIVE_H_	PORT_B_LPMOD		PORT_A_LPMOD	PORT_B_ACT_L			
F	SGMII_N_IN	IN	E	RESET_L_IN	Е	ED	12V	12V	F
Е	SGMII P IN	GND	PORT_B_I2C_S DA	GND	PORT_A_I2C_S DA	GND	12V	GND	E
	SGMII_P_IN	GND	DA	GND	DA	PORT B LNK L	120	GND	
D	GND	GPIO 1	GND	PWR EN IN	GND	ED	GND	12V	D
			PORT_B_I2C_SC		PORT_A_I2C_SC	PORT_A_ACT_L			
C	SGMII_N_OUT	GPIO_0	L	INT_L_OUT	L	ED	12V	12V	C
В	SGMII_P_OUT	GND	PORT_B_3V3	GND	PORT_A_3V3	GND	12V	GND	В
				BLANK_PRSNT		PORT_A_LNK_L			
Α	GND	GND	GND	_L	GND	ED	GND	GND	Α
	8	7	6	5	4	3	2	1	

6. VPD Contents

The Fabric Device has a slave I2C bus that operates at 100kHz. The Fabric Device has a VPD EEPROM located at 2 wire serial interface address 0xA0. The VPD data is set at manufacturing and is not changed during runtime. The VPD data is defined in Table 6-1 Vital Product Data. All strings are all 8-bit ASCII, left justified, null terminated, with trailing nulls.

Table 6-1 Vital Product Data

Table 0-1 Vital Floduct Data								
Addr	Size (B)	R/W	Value type	Function	Default Value	Description		
0	1	RO	Unsigned Int	Varaion	Vendor	Format version		
1	3	RO		Version	0	Reserved		
4	1	RO	Unsigned Int	Device Class	Vendor	Identifies device Device class type		
5	1	RO	Unsigned Int	Device Class	Vendor	Identifies device Device subclass type		
6	40	RO	8-bit ASCII		Vendor	Vendor name string		
46	40	RO	8-bit ASCII		Vendor	Serial number string		
86	40	RO	8-bit ASCII		Vendor	Model number string		
126	40	RO	8-bit ASCII	ID	Vendor	Part number string		
166	36	RO	8-bit ASCII		Vendor	UUID string (with hyphens)		
202	8	RO	8-bit ASCII		Vendor	MFG Date String "DDMMYYYY"		
210	12	RO			0	Reserved		
222	1	RO	Unsigned Int		Vendor	Protocol		
223	1	RO	Unsigned Int	Fabric	Vendor	Active Ports		
224	2	RO			0	Reserved		
226	1	RO	Unsigned Int	Doub O	Vendor	Maximum Link speed		
227	1	RO	Unsigned Int	Port 0	Vendor	Maximum Link width (#)		
228	1	RO	Unsigned Int	Doub 1	Vendor	Maximum Link speed		
229	1	RO	Unsigned Int	Port 1	Vendor	Maximum Link width (#)		
230	2	RO	Unsigned Int		Vendor	Initial power requirement (W)		
232	2	RO	Unsigend Int	Initial Power ¹⁸	Vendor	Initial power duration (ms)		
234	2	RO			0	Reserved		
236	2	RO	Unsigned Int	Operational Devents	Vendor	Maximum 12V Rail power (W)		
238	2	RO	Unsigned Int	Operational Power ¹⁸	Vendor	Minimum 12V Rail power (W)		
240	4	RO	Unsigned Int		Vendor	Maximum discharge time (ms)		
244	4	RO	Unsigned Int	Power Hold-up ¹⁸	Vendor	Maximum discharge current (mA)		
248	4	RO	Unsigned Int		0	Reserved		
252	2	RO	Unsigned int	UART	Vendor	Maximum speed (kHz)		
254	2	RO	Unsigned int	Extensibility	Vendor	Capability List pointer		

Table 6-2: Device Classes

ID	Device Class
0	Blank
1	Other
2	Storage
3	Memory
4	Compute
5	Uninterruptible Power Supply
6-Fh	Reserved

8 9

5 6

7

Table 6-3: Storage Subclasses

ID	Device Subclass
0	None
1	Other
2	Solid State Storage
3	Hard Disk Drive
4-Fh	Reserved

2 Table 6-4: Compute Subclasses

ID	Device Subclass		
0	None		
1	Other		
2	CPU		
3	GPU		
4	FPGA		
5	ASIC		
6-Fh	Reserved		

Table 6-5: Memory Subclasses

ID	Device Subclass
0	None
1	Other
2	Volatile Memory
3	Non-Volatile Memory
4-Fh	Reserved

Table 6-6: Power Storage Subclasses

ID	Device Subclass
0	None
1	Other
2	Battery
3	Capacitor
4-Fh	Reserved

Table 6-7: Protocols

ID	Device
0	None
1	Other
2	Ethernet
3	Infiniband
4	PCIe
5	Fibre Channel
6	Gen-Z
7	SAS
8-Fh	Reserved

Table 6-8: Active Ports

Formatted Table

Table 6-8: Active Ports

		
ID	Device	
0	No ports active	
1	Port 0 active	
2	Port 1 active	
3	Both ports active	
4-Fh	Reserved	

Table 6-9: Link Speeds

Table 0-3. Li	ik Speeds
ID	Device
0	None
1	Other
2	1 Gb
3	6 Gb
4	10 Gb
5	12 Gb
6	16 Gb
7	24 Gb
8	25 Gb
9	32 Gb
Α	56 Gb
B-Fh	Reserved

6.1 Initial Power

3

8

10

12 13

14

15

16

18 19

20

21

22 23

24

25

26

27 28 The initial power fields are intended to describe power draw behavior that is transient shortly after power on. For example, a deviceDevice may need to charge power loss protection capacitors and will draw a higher than maximum operational power until charged.

6.2 Operational Power

These fields indicate the power consumption limits under normal operation. The maximum power field indicates what the maximum power that this deviceDevice will consume is. The minimum power field indicates the minimum power required for this deviceDevice to function. Powering the deviceDevice at minimum power does not guarantee any level of performance. The minimum power level is meant to indicate what the minimum power for this deviceDevice to respond to requests over the fabric interfaces.

6.3 Power Hold Up

The power hold-up fields are meant to describe behavior of the device-Device after a power loss event. For a Power storage device-Device, these fields can be used to determine how long it can sustain other device-Devices in the enclosure. For a non-power storage device-Device, these fields indicate how long the device-Device will remain operational under its own internal holdup power.

6.4 Capability List

The capability list allows for the discovery of optional extended features. These structures are optional. The data structure is constructed as a linked list. The pointer (if any) located at offset 254, points to the first capability structure whose format is shown in Table 6-10 I2C Standard Capability Data Structure. The Capability data structure has a 4-byte header. The first 2 bytes identify the Capability ID of the feature. A Capability ID of 0xFE indicates a vendor specific capability as shown in Table 6-11 I2C Vendor Specific Capability Data Structure. The second two bytes of the capability header are Next Address field and contain a pointer to the next capability in the list. Subsequent bytes are defined by each specific capability or are vendor specific. A value of zero in the Next Address field indicates the end of the linked list.

6.5 Standard Capability Data Structure

Table 6-10 I2C Standard Capability Data Structure

Byte 3	Byte 2	Byte 1	Byte 0
Next Address Pointer		Capability ID	
Optional parameters specific to each capability			

6.6 Vendor Specific Capability Data Structure

Table 6-11 I2C Vendor Specific Capability Data Structure

Byte 3	Byte 2	Byte 1	Byte 0
Next Address Pointer		0xFE	
Optional parameters specific to each capability			

7. Dynamic Data

5

6

10

11 12

13 14

15

16

Optional Dynamic Data are hosted by a deviceDevice on the I2C bus at address 0x30 (i.e., slave address bits 7-0 correspond to 0011_000). The dynamic data is a single 128-byte vendor defined register. As the primary method of interfacing with the Fabric Device from the chassis management processor is the internal 1Gb Ethernet link, the use of the Dynamic Data over I2C interface is to provide diagnostic information as to why that internal 1Gb Ethernet link is not viable. As the usage of the Dynamic Data is to help with debugging efforts, the data layout and fields are not defined in this standard and are to be set by each deviceDevice vendor. The purpose of defining the Dynamic Data address 0x30 and length of 128 Bytes is to allow management software utilities and applications to acquire a standardized quantity of data from any deviceDevice that may then be passed on to Customer Support Representatives for interpretation