SFF-8071
Specification for
SFP+ 1X 0.8 mm Card Edge Connector
Rev 1.9.2 October 11, 2019

Abstract: This specification defines the 0.8 mm card edge connector for multigigabit applications using the upper row of contacts. One such use is as the receptacle connector for Fibre Channel.

There are multiple generations based on electrical performance: Some examples are:

<table>
<thead>
<tr>
<th>Speed</th>
<th>SFP Family</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Gb/s</td>
<td>SFP+</td>
<td>SFF-8084</td>
</tr>
<tr>
<td>10 Gb/s</td>
<td>SFP10</td>
<td>SFF-8083</td>
</tr>
<tr>
<td>16 Gb/s</td>
<td>SFP16</td>
<td>SFF-8081</td>
</tr>
<tr>
<td>28 Gb/s</td>
<td>SFP28</td>
<td>SFF-8402</td>
</tr>
<tr>
<td>56 Gb/s</td>
<td>SFP56</td>
<td>SFF-8402 (with PAM4 signaling)</td>
</tr>
</tbody>
</table>

This specification provides a common reference for systems manufacturers, system integrators, and suppliers.

This specification is made available for public review, and written comments are solicited from readers. Comments received by the members will be considered for inclusion in future revisions of this specification.

The description of a connector in this specification does not assure that the specific component is actually available from connector suppliers. If such a connector is supplied it must comply with this specification to achieve interoperability between suppliers.

POINTS OF CONTACT:
Jay Neer
Molex
2222 Wellington Court
Lisle, IL 60532
Ph: 611-447-2907 X3889
Email: jay.neer@molex.com

Chairman SFF TA TWG
Email: SFF-Chair@snia.org

Copyright © 2019 SNIA. All rights reserved.
Intellectual Property

The user’s attention is called to the possibility that implementation of this specification may require the use of an invention covered by patent rights. By distribution of this specification, no position is taken with respect to the validity of a claim or claims or of any patent rights in connection therewith. This specification is considered SNIA Architecture and is covered by the SNIA IP Policy and as a result goes through a request for disclosure when it is published. Additional information can be found at the following locations:

- Results of IP Disclosures: http://www.snia.org/sffdisclosures
- SNIA IP Policy: http://www.snia.org/ippolicy

Copyright

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing copyright_request@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA’s receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.
Foreword
The development work on this specification was done by the SNIA SFF TWG, an industry group. Since its formation as the SFF Committee in August 1990, the membership has included a mix of companies which are leaders across the industry.

For those who wish to participate in the activities of the SFF TWG, the signup for membership can be found at http://www.snia.org/sff/join.

Change Revision History
The content of this specification was formerly contained in SFF-8084, and it was broken out into a separate specification so that it could be referenced by higher speed variations.

Rev 1.3 - Removed all but the 20 contact configurations
Rev 1.4 - Added multiple generations table to Abstract.
Rev 1.5 - Changed title to correlate with QSFP+ family of specifications
 - Added Figure 3-1 with explanation
Rev 1.6 - Correct FC-PH-3 reference to FC-PH-2
Rev 1.7 - SFF-8071 created with the connector content removed from SFF-8084
Rev 1.8 - Updated to SNIA template
 - Added gold finger width option
 - Removed MSA abbreviation (not used)

Rev 1.9 (October 30, 2018)
 - Consolidated Section 6.1 & aligned requirements with other SFP specifications
 - Editorial changes throughout document
 - Changed text in Table 6-3 to accurately reflect performance requirements

Rev 1.9a (October 30, 2018)
 - Corrected metadata

Rev 1.9.1 (October 4, 2019)
 - Corrected typo in Table 6-1 (removed an extra "0" for dimension value for A04 (*2))

Rev 1.9.2 (October 11, 2018)
 - Various editorial changes
1. Scope

This specification defines the terminology and physical requirements for the mating interface and physical characteristics of the 0.8 mm card edge connector to support multi-gigabit applications. The dimensions specified apply to connectors with 20 contacts.

The using interfaces define requirements on the characteristic impedance and ability to transmit multi-gigabit signals to and from optical pluggable modules, and in some cases via cable assemblies. When this connector is used in such an application, it is subject to the requirements of those documents.

1.1 Copyright

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration, and,
2. Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, there may be no commercial use of this document, or sale of any part, or this entire document, or distribution of this document to third parties. All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated (Exception) above may be requested by e-mailing copyright_request@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Permission for the Exception shall not be unreasonably withheld. It can be assumed permission is granted if the Exception request is not acknowledged within ten (10) business days of SNIA’s receipt. Any denial of permission for the Exception shall include an explanation of such refusal.

1.2 Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

2. References

2.1 Industry Documents

The following standards and specifications are relevant to this Specification.

- ANSI/ASME Y14.5M Geometric Dimensioning and Tolerancing (GD&T)
- EIA 364-06 Contact Resistance Test Procedure for Electrical Connectors
- EIA 364-09 Durability Test Procedure for Electrical Connectors and Contacts
- EIA 364-13 Mating and Unmating Forces Test Procedures for Electrical Connectors
- EIA 364-21 Insulation Resistance Test Procedure for Electrical Connectors, Sockets, and Coaxial Contacts
- ANSI 352-2002 FC-PI (Fibre Channel Physical Interface)
- ANSI 404:2006 FC-PI-2 (Fibre Channel Physical Interface 2) / T11/1506D
2.2 Sources

The complete list of SFF documents (SFF, INF, and REF documents) which have been published, are currently being worked on, or that have been expired by the SFF Committee can be found at http://www.snia.org/sff/specifications. Suggestions for improvement of this specification will be welcome, they should be submitted to http://www.snia.org/feedback.

There are several projects active within the SFF TWG. The complete list of specifications which have been completed or are still being worked on are listed in http://www.snia.org/sff/specifications/SFF-8071.TXT.

Other standards may be obtained from the organizations listed below:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American Society of Mechanical Engineers (ASME)</td>
<td>https://www.asme.org</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Components Industry Association (ECIA)</td>
<td>https://www.eicanow.org</td>
</tr>
<tr>
<td>INCITS</td>
<td>International Committee for Information Technology Standards (INCITS)</td>
<td>http://www.incits.org</td>
</tr>
</tbody>
</table>

Copies of ANSI standards may be purchased from the International Committee for Information Technology Standards (http://www.techstreet.com/infogate.htm).
2.3 Conventions

The dimensioning conventions are described in ANSI-Y14.5M, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only). The following conventions are used throughout this document:

DEFINITIONS

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in the definitions or in the text where they first appear.

ORDER OF PRECEDENCE

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and values.

LISTS

Lists sequenced by lowercase or uppercase letters show no ordering relationship between the listed items.

EXAMPLE 1 - The following list shows no relationship between the named items:

a. red (i.e., one of the following colors):
 A. crimson; or
 B. pink;
 b. blue; or
 c. green.

Lists sequenced by numbers show an ordering relationship between the listed items.

EXAMPLE 2 - The following list shows an ordered relationship between the named items:

1. top;
 2. middle; and
 3. bottom.

Lists are associated with an introductory paragraph or phrase and are numbered relative to that paragraph or phrase (i.e., all lists begin with an a. or 1. entry).

DIMENSIONING CONVENTIONS

The dimensioning conventions are described in ASME-Y14.5, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

NUMBERING CONVENTIONS

The ISO convention of numbering is used i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point. This is equivalent to the English/American convention of a comma and a period.

<table>
<thead>
<tr>
<th>American</th>
<th>French</th>
<th>ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0,6</td>
<td>0.6</td>
</tr>
<tr>
<td>1,000</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>1,323,462,9</td>
<td>1 323 462,9</td>
<td>1 323 462,9</td>
</tr>
</tbody>
</table>
3. Keywords, Acronyms, and Definitions

 For the purpose of this document, the following keywords, acronyms, and definitions apply:

 3.4.1 Definitions

 For the purpose of SFF Specifications, the following definitions apply:

 - **CL**: Centerline
 - **PCB**: Printed Circuit Board
 - **SFP**: Small Formfactor Pluggable
 - **SMT**: Surface-mount technology

 Advanced grounding contacts: Connector contacts that make first and break last and are capable of carrying power-ground-return currents and performing electrostatic discharge. Other terms sometimes used to describe these features are: grounding pins, ESD contacts, grounding contacts, static drain, and pre-grounding contacts.

 Alignment guides: Connector features that preposition insulators prior to electrical contact. Other terms sometimes used to describe these features are: guide pins, guide posts, blind mating features, mating features, alignment features, and mating guides.

 - **Centerline or CL**: A real or imaginary line that is equidistant from the surface or sides of something.

 Contact mating sequence: Order of electrical contact during mating/unmating process. Other terms sometimes used to describe this feature are: contact sequencing, contact positioning, make first/break last, EMLB (early make late break) staggered contacts, and long pin/short pin.

 Frontshell: That metallic part of a connector body that directly contacts the backshell or other shielding material that provides mechanical and shielding continuity between the connector and the cable media. Other terms sometimes
used to describe this part of a cable assembly are: housing, nosepiece, cowling, and metal shroud.

Mating side: The side of the connector that joins and separates from the mating side of a connector of opposite gender. Other terms commonly used in the industry are mating interface, separable interface and mating face.

Note: The fixed gender is used on the device side except in the case of wire termination.

Figure 2-1 Mating side Gender Definition

Maximum Component Height: Distance from board surface to farthest overall connector feature

Offset: An alignment shift from the center line of the connector

Optional: This term describes features which are not required by the SFF Specification. However, if any feature defined by the SFF Specification is implemented, it shall be done in the same way as defined by the Specification.

Describing a feature as optional in the text is done to assist the reader. If there is a conflict between text and tables on a feature described as optional, the table shall be accepted as being correct.

Right Angle: A connector design for use with printed circuit board assembly technology where the mating direction is parallel to the plane of the printed circuit board

SFP + 1 x 0.8 mm Card Edge Connector
Surface mount: A connector design and a printed circuit board design style where the connector termination points do not penetrate the printed circuit board and are subsequently soldered to the printed circuit board.

Termination side: The side of the connector opposite the mating side that is used for permanently attaching conductors to the connector. Due to contact-numbering differences between mating side genders the termination side shall always be specified in conjunction with a mating side of a specific gender. Other terms commonly used in the industry are: back end, non-mating side, footprint, pc board side, and post side.

Through hole: A connector design and a printed circuit board design style where the connector termination points penetrate the printed circuit board and are subsequently soldered to the printed circuit board.
3.1
May / may not: Indicates flexibility of choice with no implied preference.

Obsoleten: Indicates that an item was defined in prior specifications but has been removed from this specification.

Optional: Describes features which are not required by the SFF specification. However, if any feature defined by the SFF specification is implemented, it shall be done in the same way as defined by the specification. Describing a feature as optional in the text is done to assist the reader.

Prohibited: Describes a feature, function, or coded value that is defined in a referenced specification to which this SFF specification makes a reference, where the use of said feature, function, or coded value is not allowed for implementations of this specification.

Reserved: Defines the signal on a connector contact (when) its actual function is set aside for future standardization. It is not available for vendor specific use. Where this term is used for bits, bytes, fields, and code values, the bit, byte, field, and code value are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

Restricted: Refers to features, bits, bytes, words, and fields that are set aside for other standardization purposes. If the context of the specification applies the restricted designation, then the restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word, or field (e.g., a restricted byte uses the same values as defined for a reserved byte).

Shall: Indicates a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this specification.

Should: Indicates flexibility of choice with a strongly preferred alternative.

Vendor specific: Indicates something (e.g., a bit, field, code value) that is not defined by this specification. Specification of the referenced item is determined by the manufacturer and may be used differently in various implementations.

3.2 Acronyms and Abbreviations

CL: Centerline
PCB: Printed Circuit Board
SFP: Small Formfactor Pluggable
SMT: Surface-mount technology

3.3 Definitions

Advanced grounding contacts: Connector contacts that make first and break last and are capable of carrying power ground return currents and performing electrostatic discharge. Other terms sometimes used to describe these features are: grounding pins, ESD contacts, grounding contacts, static drain, and pre-grounding contacts.

Centerline or CL: A real or imaginary line that is equidistant from the surface or sides of something.

Contact mating sequence: Order of electrical contact during mating/unmating process. Other terms sometimes used to describe this feature are: contact sequencing, contact positioning, make first/break last, EMLB (early make late break) staggered contacts, and long pin / short pin.

Frontshell: That metallic part of a connector body that directly contacts the backshell or other shielding.
material that provides mechanical and shielding continuity between the connector and the cable media. Other terms sometimes used to describe this part of a cable assembly are: housing, nosepiece, cowling, and metal shroud.

Mating side: The side of the connector that joins and separates from the mating side of a connector of opposite gender. Other terms commonly used in the industry are mating interface, separable interface and mating face.

Note: The fixed gender is used on the device side except in the case of wire termination.

FIGURE 3-1 MATING SIDE GENDER DEFINITION

Optional: This term describes features which are not required by the SFF Specification. However, if any feature defined by the SFF Specification is implemented, it shall be done in the same way as defined by the Specification. Describing a feature as optional in the text is done to assist the reader. If there is a conflict between text and tables on a feature described as optional, the table shall be accepted as being correct.
3.4. General Description

The 0.8 mm connection system is based on industry-proven card edge style contacts, which mate with a single wipe. 0.8 mm card edge connectors find their most important application where signals have rise times typically in the range of 25 ps and where positive retention is needed but ease of insertion and removal is also desired. This covers virtually all of the external inter-enclosure applications for gigabit serial applications that use balanced copper media for transmission.

Design goals were minimization of crosstalk and minimum transmission line impedance discontinuity across the connector interface at the specified signaling rates on the upper row of contacts. The lower row of contacts is rated at signaling rates up to 2.5 Gb/s.

The shield (cage) contact (not shown or part of this specification) is required to make contact before any of the signal contacts upon insertion and to break contact only after all contacts are separated upon removal. This ensures that any ground potential differences between enclosures are first exposed to the shield and thereby minimizes the risk of damaging the sensitive input and output stages of the transceivers when the signal contacts are mated.

A cage or latching device (not shown or part of this specification) is required to guide the mating interface (paddle card) into the connector, provide sufficient wipe on the contact interface, provide a hard stop which prevents the transceiver side from bottoming in the connector, and keeps the paddle card contacts on the connector contacts during use. See REF-1011 and its references for more information about this form factor.

This connector is mated with either a pluggable module or a direct attach cable assembly.

This specification includes the minimum lengths, widths and positional tolerances of the contacts.
4.5. Mechanical Specifications

4.15.1 Connector Configurations

The 0.8 mm card edge connector relies on a receiving body and paddle card, which are the primary elements of a connector used for the application.

The primary elements provide a flexible means to implement solutions for diverse applications e.g., direct board-to-board implementations can incorporate the plug into the side of one board and mate directly to a receiving body on the other.

The figure is an example which illustrates one style of receiving body and how they become receptacles to receive the plug when encapsulated by the shell that is designed for an unshielded connector application.

FIGURE 5-1 GENERAL VIEW OF RIGHT-ANGLED BODY RECEPTACLE

The cage provides guidance and retention for the cable plug or pluggable module, and absorbs the stress imposed by insertion and removal of the plug or module. This protects the quality of the solder joints between the body and host board.
4.35.2 Contact Sequencing

To combat electrostatic discharge, static drain, protect signal pins, or for other purposes, it may be desirable that during module/cable insertion some contacts make contact first and that during extraction these contacts break last. This function can be achieved with contact sequencing. Figure 5-2 shows an example where first the advanced grounding contacts make contact with the board side contacts and then the power contacts make contact, and that the signal pins make contact after ground and power has been established. During extraction the reverse process happens. For details on the sequencing dimensions see Figure 6-1.

4.35.3 Contact Numbering

The contact numbering is shown in the table. For location of contacts 1, 10, 11, and 20 A01 and B01, see Figure 6-1 and Figure 5-2.

<table>
<thead>
<tr>
<th>Contacts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
5.6. Connector Dimensions

The dimensioning conventions are described in ANSI-Y14.5M, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters.

Dimension related requirements for the connector system addressed in this document are specified in the tables and figures in this clause.

5.16.1 Paddle Card

![Diagram of Paddle Card]

Note: No solder mask within 0.05 mm of the defined pad locations.

FIGURE 6-1 PADDLE CARD
TABLE 6-1 PADDLE CARD DIMENSIONS

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>mm</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>CL to last</td>
<td>3.80</td>
<td>Basic</td>
</tr>
<tr>
<td>A02</td>
<td>CL to first</td>
<td>3.40</td>
<td>Basic</td>
</tr>
<tr>
<td>A03</td>
<td>Contact pad pitch within row</td>
<td>0.80</td>
<td>Basic</td>
</tr>
<tr>
<td>A04 (+1)</td>
<td>Pad width (paddle card width 9.20)</td>
<td>0.60</td>
<td>+/-0.05</td>
</tr>
<tr>
<td>A04 (+2)</td>
<td>Pad width (paddle card width 9.22)</td>
<td>0.54</td>
<td>+/-0.04</td>
</tr>
<tr>
<td>A05 (+1)</td>
<td>Paddle card width (pad width 0.60)</td>
<td>9.20</td>
<td>+/-0.10</td>
</tr>
<tr>
<td>A05 (+2)</td>
<td>Paddle card width (pad width 0.54)</td>
<td>9.22</td>
<td>+/-0.08</td>
</tr>
<tr>
<td>A06</td>
<td>End of paddle card to datum D</td>
<td>1.30</td>
<td>+/-0.10</td>
</tr>
<tr>
<td>A07</td>
<td>Start of ground pad to datum D</td>
<td>0.80</td>
<td>+/-0.05</td>
</tr>
<tr>
<td>A08</td>
<td>Start of power pad to datum D</td>
<td>0.40</td>
<td>+/-0.05</td>
</tr>
<tr>
<td>A09</td>
<td>Length of signal pad</td>
<td>2.20</td>
<td>Minimum</td>
</tr>
<tr>
<td>A10</td>
<td>Length of component/solder mask keep-out area</td>
<td>5.50</td>
<td>Minimum</td>
</tr>
<tr>
<td>A11</td>
<td>Paddle card thickness</td>
<td>1.00</td>
<td>+/-0.10</td>
</tr>
<tr>
<td>A12</td>
<td>Paddle card end chamfer</td>
<td>0.30</td>
<td>+0.10/-0.20</td>
</tr>
<tr>
<td>A13</td>
<td>Paddle card end chamfer angle</td>
<td>45° degrees</td>
<td>Reference</td>
</tr>
<tr>
<td>A14</td>
<td>Length from front edge to shoulder</td>
<td>6.00</td>
<td>Minimum</td>
</tr>
</tbody>
</table>

(*) Dimensions of the pad width and the paddle card width are such that the centerline of the terminal connector contact does not go off the edge of the pad. An implementer may use either 0.60/9.20 or 0.54/9.22 mm for the A04/A05 dimensions.
5.26.2 Board Side Connector

FIGURE 6-2 BOARD SIDE CONNECTOR

NOTES
1. CONTACT MUST BE WITHIN 0.005 INCH TOLERANCE ZONE THE CENTERLINE OF TOLERANCE ZONE IS DEFINED BY THE INDICATED BASIC DIMENSIONS RELATIVE TO Datum D REGARDLESS OF FEATURE SIZE.
2. Datum E: PADDLE CARD SLOT WIDTH
3. Datum F: BOTTOM OF CONNECTOR BODY
4. Datum G: LOCKING FEG

SFP+ 1x 0.8 mm Card Edge Connector

Copyright © 2019 SNIA. All rights reserved.
TABLE 6-2 BOARD SIDE CONNECTOR DIMENSIONS

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>mm</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>CL to last</td>
<td>3.80</td>
<td>Basic</td>
</tr>
<tr>
<td>A02</td>
<td>CL to first</td>
<td>3.40</td>
<td>Basic</td>
</tr>
<tr>
<td>A03</td>
<td>Contact pitch within row</td>
<td>0.80</td>
<td>Basic</td>
</tr>
<tr>
<td>B01</td>
<td>Overall width</td>
<td>11.20</td>
<td>Maximum</td>
</tr>
<tr>
<td>B02</td>
<td>Overall depth</td>
<td>9.20</td>
<td>Maximum</td>
</tr>
<tr>
<td>B03</td>
<td>Paddle card slot width</td>
<td>9.40</td>
<td>+/-0.05</td>
</tr>
<tr>
<td>B04</td>
<td>Contact tolerance zone</td>
<td>0.33</td>
<td>Maximum</td>
</tr>
<tr>
<td>B05</td>
<td>Paddle card slot height</td>
<td>1.35</td>
<td>Maximum</td>
</tr>
<tr>
<td>B06</td>
<td>Paddle card slot to datum F</td>
<td>2.75</td>
<td>+/-0.15</td>
</tr>
<tr>
<td>B07</td>
<td>Contact pitch row to row</td>
<td>0.40</td>
<td>Basic</td>
</tr>
<tr>
<td>B08</td>
<td>Peg to peg</td>
<td>9.60</td>
<td>Basic</td>
</tr>
<tr>
<td>B09</td>
<td>Peg height</td>
<td>1.40</td>
<td>+/-0.05</td>
</tr>
<tr>
<td>B10</td>
<td>Peg width</td>
<td>0.90</td>
<td>Reference</td>
</tr>
<tr>
<td>B11</td>
<td>Peg diameter</td>
<td>1.40</td>
<td>+/-0.05</td>
</tr>
<tr>
<td>B12</td>
<td>Housing Front to contact CL</td>
<td>3.95</td>
<td>Maximum</td>
</tr>
<tr>
<td>B13</td>
<td>Overall height</td>
<td>5.40</td>
<td>Maximum</td>
</tr>
<tr>
<td>B14</td>
<td>Peg CL to solder foot</td>
<td>4.65</td>
<td>Reference</td>
</tr>
<tr>
<td>B15</td>
<td>Peg CL to card slot</td>
<td>2.20</td>
<td>Minimum</td>
</tr>
<tr>
<td>B16</td>
<td>Peg CL to contact CL</td>
<td>0.70</td>
<td>+/-0.25</td>
</tr>
</tbody>
</table>
5.36.3 Board Side Connector Footprints

![Board Side Connector Footprint Diagram]

NOTES:
1. GROUNDS ARE CLEARED UNDER SIGNAL PADS.
2. DATUMS AND ENDS DEPENDING TO BE ESTABLISHED.
 H DATUM H - CONNECTOR LOCATING PEG
 I DATUM J - CONNECTOR LOCATING PEG
 K DATUM K - SIDE OF FOOTPRINT
 L DATUM L - FRONT OF FOOTPRINT

FIGURE 6-3 BOARD SIDE CONNECTOR FOOTPRINT
FIGURE 6-4 ALTERNATE BOARD SIDE CONNECTOR FOOTPRINT
6.7. Performance Requirements

6.17.1 Test Sequences

This specification conforms to the test sequences as defined in EIA-364 TS-1000.

Table 7-1 TS-1000 REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Durability Cycles</td>
<td>250</td>
</tr>
<tr>
<td>Field Life (3, 5, 7, or 10 years)</td>
<td>10 years</td>
</tr>
<tr>
<td>Field Temperature (57, 60, 65, 75, or 85°C)</td>
<td>65°C degrees</td>
</tr>
<tr>
<td>Test Group 4 Option</td>
<td>Manufacturer to specify</td>
</tr>
<tr>
<td>Plating Type (Precious / non-Precious)</td>
<td>Precious</td>
</tr>
<tr>
<td>Surface Treatment (Lubricated or non-Lubricated)</td>
<td>Manufacturer to specify</td>
</tr>
</tbody>
</table>

Table 7-2 ELECTRICAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Procedure</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>EIA-364-70 30°C temperature rise</td>
<td>0.5 A per contact</td>
</tr>
<tr>
<td>Low Level Contact Resistance</td>
<td>EIA-364-23 20 mV DC, 100 mA</td>
<td>20 mOhm deviation from baseline</td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>EIA-364-21 100 V DC between adjacent contacts</td>
<td>100 MOhm minimum</td>
</tr>
<tr>
<td>Dielectric Withstanding Voltage</td>
<td>EIA-364-20 300 V DC minimum for 1 minute between adjacent contacts</td>
<td>1 mA max leakage and no breakdown</td>
</tr>
</tbody>
</table>
TABLE 7-3 MECHANICAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Procedure</th>
<th>Requirement¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Force</td>
<td>EIA 364-13 Test with connector, cage, and module² (latch disengaged, without heatsink)</td>
<td>40 N Max</td>
</tr>
<tr>
<td>Extraction Force</td>
<td>EIA 364-13 Test with connector, cage, and module² (Latch disengaged, without heatsink)</td>
<td>12.5 N Max</td>
</tr>
<tr>
<td>Latch Strength</td>
<td>Pull to separate module from cage Test with connector, cage, and module (latch engaged)</td>
<td>90-170 N</td>
</tr>
<tr>
<td>Connector/ Cage Durability</td>
<td>EIA-364-09 Test with connector, cage, and module²</td>
<td>100 cycles</td>
</tr>
<tr>
<td>Module Durability</td>
<td>EIA-364-09 Test with connector, cage, and module²</td>
<td>50 cycles</td>
</tr>
</tbody>
</table>

Notes:
1. In addition to the requirements listed, all parts must be free of visible damage after testing.
2. Modules may be replaced after 50 cycles.

TABLE 7-4 ENVIRONMENTAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-20° C to +85° C (deg C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>80% percent relative humidity</td>
</tr>
</tbody>
</table>
6.27.2 High Frequency Performance Requirements

For better performance, it is recommended that grounds are cleared from underneath signal pads.

FIGURE 7-1 DE-EMBEDDING REFERENCE PLANE