This document was developed by the SFF Committee prior to it becoming the SFF TA (Technology Affiliate) TWG (Technical Working Group) of the SNIA (Storage Networking Industry Association) in 2016.

The information below should be used instead of the equivalent herein.

POINTS OF CONTACT: SFF TA TWG Chair Email: sff-chair@snia.org.

LOCATION OF SFF DOCUMENTS: http://www.snia.org/sff/specifications.

Suggestions for improvement of this specification are welcome and should be submitted to http://www.snia.org/feedback.

If you are interested in participating in the activities of the SFF TA TWG, additional information and the membership application can be found at: http://www.snia.org/sff.
SFF Committee documentation may be purchased (see 2.3).
SFF Committee documents are available at fission.dt.wdc.com/pub/standards/SFF/spec

SFF Committee

SFF-8009 Specification for

Unitized Connector for Cabled Applications

Rev 4.2 October 10, 2000

Secretariat: SFF Committee

Abstract: This document defines the Unitized Connector used in cabled applications for disk drives. Rev 2.1 of this Specification was approved as a Published Specification. Additional information requested by connector vendors has been provided in this revision.

This document provides a common specification for systems manufacturers, system integrators, and suppliers of magnetic disk drives. This is an internal working document of the SFF Committee, an industry ad hoc group.

This document is made available for public review, and written comments are solicited from readers. Comments received by the members will be considered for inclusion in future revisions of this document.

Support: This document is supported by the identified member companies of the SFF Committee.

Documentation: This document has been prepared in a similar style to that of the ISO (International Organization of Standards).

POINT OF CONTACT:

Doug Wagner I. Dal Allan
FCI Chairman SFF Committee
472 Delwood Ct ENDL
Newbury Park 14426 Black Walnut Court
CA 91320 Saratoga CA 95070

805-498-0325 Ph: 408-867-6630
805-498-0702Fx Fx: 408-867-2115
dwagner@fciconnect.com 250-1752@mcimail.com
EXPRESSION OF SUPPORT BY MANUFACTURERS

The following member companies of the SFF Committee voted in favor of this industry specification.

Adaptec Integral Peripherals
All Best Technique Madison Cable
AMP MiniStor Per'ls
Berg Molex
Cirrus Logic Montrose/CDT
Compaq Oak Technology
ENDL Quantum
FCI/Berg Seagate
Fujitsu CPA Toshiba America
Hewlett Packard Unisys
Hitachi Cable Yamagata Fujitsu
IBM

The following SFF member companies voted no on the technical content of this industry specification.

Robinson Nugent

The following member companies of the SFF Committee voted to abstain on this industry specification.

Amphenol Pioneer NewMedia
DDK Electronics Ricoh
DEC Silicon Systems
Matsushita Specialty Electronics
Maxtor Winchester Elect
Methode

The following member companies of the SFF Committee voted to forward this industry specification to an accredited standards body.

Integral Peripherals Seagate
Oak Technology
If you are not a member of the SFF Committee, but you are interested in participating, the following principles have been reprinted here for your information.

PRINCIPLES OF THE SFF COMMITTEE

The SFF Committee is an ad hoc group formed to address storage industry needs in a prompt manner. When formed in 1990, the original goals were limited to defining de facto mechanical envelopes within which disk drives can be developed to fit compact computer and other small products.

Adopting a common industry size simplifies the integration of small drives (2 1/2" or less) into such systems. Board-board connectors carrying power and signals, and their position relative to the envelope are critical parameters in a product that has no cables to provide packaging leeway for the integrator.

In November 1992, the SFF Committee objectives were broadened to encompass other areas which needed similar attention, such as pinouts for interface applications, and form factor issues on larger disk drives. SFF is a forum for resolving industry issues that are either not addressed by the standards process or need an immediate solution.

Documents created by the SFF Committee are expected to be submitted to bodies such as EIA (Electronic Industries Association) or an ASC (Accredited Standards Committee). They may be accepted for separate standards, or incorporated into other standards activities.

The principles of operation for the SFF Committee are not unlike those of an accredited standards committee. There are 3 levels of participation:

- Attending the meetings is open to all, but taking part in discussions is limited to member companies, or those invited by member companies
- The minutes and copies of material which are discussed during meetings are distributed only to those who sign up to receive documentation.
- The individuals who represent member companies of the SFF Committee receive documentation and vote on issues that arise. Votes are not taken during meetings, only guidance on directions. All voting is by letter ballot, which ensures all members an equal opportunity to be heard.

Material presented at SFF Committee meetings becomes public domain. There are no restrictions on the open mailing of material presented at committee meetings. In order to reduce disagreements and misunderstandings, copies must be provided for all agenda items that are discussed. Copies of the material presented, or revisions if completed in time, are included in the documentation mailings.

The sites for SFF Committee meetings rotate based on which member companies volunteer to host the meetings. Meetings have typically been held during the ASC T10 weeks.

The funds received from the annual membership fees are placed in escrow, and are used to reimburse ENDL for the services to manage the SFF Committee.
Foreword

When 2 1/2" diameter disk drives were introduced, there was no commonality on external dimensions e.g. physical size, mounting locations, connector type, connector location, between vendors.

The first use of these disk drives was in specific applications such as laptop portable computers in which space was at a premium and time to market with the latest machine was an important factor. System integrators worked individually with vendors to develop the packaging. The result was wide diversity, and with space being such a major consideration in packaging, it was not possible to replace one vendor's drive with a competitive product.

The desire to reduce disk drive sizes to even smaller dimensions such as 1.8" and 1.3" made it likely that devices would become even more constrained in dimensions because of a possibility that such small devices could be inserted into a socket, not unlike the method of retaining semiconductor devices.

The problems faced by integrators, device suppliers, and component suppliers led to the formation of an industry ad hoc group to address the marketing and engineering considerations of the emerging new technology in disk drives. After two informal gatherings on the subject in the summer of 1990, the SFF Committee held its first meeting in August.

During the development of the form factor definitions, other activities were suggested because participants in the SFF Committee faced problems other than the physical form factors of disk drives. In November 1992, the members approved an expansion in charter to address any issues of general interest and concern to the storage industry. The SFF Committee became a forum for resolving industry issues that are either not addressed by the standards process or need an immediate solution.

At the same time, the principle was adopted of restricting the scope of an SFF project to a narrow area, so that the majority of documents would be small and the projects could be completed in a rapid timeframe. If proposals are made by a number of contributors, the participating members select the best concepts and uses them to develop specifications which address specific issues in emerging storage markets.

Those companies which have agreed to support a documented specification are identified in the first pages of each SFF Specification. Industry consensus is not an essential requirement to publish an SFF Specification because it is recognized that in an emerging product area, there is room for more than one approach. By making the documentation on competing proposals available, an integrator can examine the alternatives available and select the product that is felt to be most suitable.
Suggestions for improvement of this document will be welcome. They should be sent to the SFF Committee, 14426 Black Walnut Ct, Saratoga, CA 95070.

The development work on this specification was done by the SFF Committee, an industry group. The membership of the committee since its formation in 1990 through July 1998 has included the following organizations:

- 3M
- Adaptec
- All Best Technique
- Alps Tohoku
- AMP
- Amphenol Interconnect
- Apple Computer
- Areal Technology
- Aztech Systems
- Berg Electronics
- Burndy
- Circuit Assembly
- Cirrus Logic
- Compaq Computer
- Conner Peripherals
- Dell Computer
- Digital Equipment
- Elastomeric Technologies
- Elco
- ENDL
- Foxconn International
- Framatome Connectors
- Fujitsu Takamisawa America
- Harting Electronik
- Harting North America
- Hewlett Packard
- Hitachi America
- Hitachi Cable Manchester
- Honda Connectors
- IBM
- Integral Peripherals
- Intel
- Intellistor
- Iomega
- JPM
- JTS
- JVC
- LG Electronics
- Madison Cable
- Matsushita Electric
- Maxtor
- Methode Electronics
- Microsoft
- MiniStor Peripherals
- Mitsumi
- Molex
- Montrose/CDT
- National Semiconductor
- NEC Deutschland
- NYPLA Industrial
- O R Technology
- Oak Technology
- Philips Laser Optics Systems
- PrairieTek
- Promise Technology
- Quantum
- Ricoh
- Robinson Nugent
- Rodime
- Rohm LSI Systems
- Samsung Electronics
- Sanyo
- Seagate Technology
- Silicon Integrated Systems
- Silicon Systems
- Sony
- Specialty Electronics
- Stockko Connectors
- Sun Microsystems
- TEAC America
- Texas Instruments DMSG
- Thomas & Betts
- Toshiba America
- Unisys
- Wearnes Hollingsworth
- Wearnes Peripherals
- Wearnes Technology
- Western Digital
- Winchester Electronics
- YC Cable USA
- Zenith Data Systems
If you are not receiving the documentation of SFF Committee activities or are interested in becoming a member, the following signup information is reprinted here for your information.

- Annual SFF Committee Membership Fee: $1,800.00
- Annual SFF Committee Paper Documentation Fee: $300.00
- Annual Surcharge for AIR MAIL to Overseas: $100.00
- Annual Surcharge for Electronic Documentation: $360.00

Name: _______________________________
Title: _______________________________
Company: _______________________________
Address: _______________________________

Phone: ____________________
Fax: ____________________
Email: _______________________________

Please register me as a Member of the SFF Committee for one year.
Paper documentation $1,800
Electronic documentation $2,160

Check Payable to SFF Committee for $_______ is Enclosed

Please invoice me $_______ on PO #: ___________________
MC/Visa/AmX_____________________________ Expires______

Please register me as an Observer on the SFF Committee for one year.
Paper documentation $300 U.S. $400 Overseas
Electronic documentation $660 U.S. $760 Overseas

Check Payable to SFF Committee for $_______ (POs Not Accepted)
MC/Visa/AmX_____________________________ Expires______

SFF Committee 408-867-6630
14426 Black Walnut Ct 408-867-2115Fx
Saratoga CA 95070 250-1752@mcimail.com
TABLE OF CONTENTS

1. Scope
 1.1 Description of Clauses 5

2. References
 2.1 Industry Documents 5
 2.2 SFF Specifications 5
 2.3 Sources 8

3. General Description 9

4. Definitions and Conventions
 4.1 Definitions 9
 4.2 Conventions 9

5. Signals
 5.1 Signal Conventions 10
 5.2 Pinouts 10
 5.2.1 SCSI ID Sel 0 11
 5.2.2 External fault 11
 5.2.3 SCSI ID Sel 1 11
 5.2.4 Vendor Unique 12
 5.2.5 SCSI ID Sel 2 12
 5.2.6 Spindle Synch 12
 5.2.7 SCSI ID Sel 3 12
 5.2.8 External activity 12
 5.2.9 Enable termination 13
 5.2.10 Ground 13
 5.2.11 5V 13
 5.2.12 Drive fault 13

6. Physical Configuration 13
 6.1 Disk Drive Parameters 13
 6.2 Connector Specifications 18

Annex A. Application Considerations 20
 A.1 Stand-Alone 20
 A.2 Remote 20
 A.3 Racked 20

FIGURES

FIGURE 6-1 ORIENTATION OF UNITIZED CONNECTOR 14
FIGURE 6-2 UNITIZED CONNECTOR 18
FIGURE 6-3 ALTERNATIVE UNITIZED CONNECTOR 19

TABLES

TABLE 5-1 POWER CONNECTOR 10
TABLE 5-2 SIGNAL ASSIGNMENTS FOR AUXILIARY CONNECTOR 10
TABLE 6-1 ALTERNATIVE UNITIZED CONNECTOR 19
1. Scope

This SFF Specification defines the unitized connector which provides a single body with three connectors in the same relative plane. The purpose of providing this assembly is to simplify cabinet harnessing of large numbers of disk drives.

The purpose of this SFF Specification is to define the pinouts so that products from different vendors may be used in the same configurations.

In an effort to broaden the applications for small form factor disk drives, an ad hoc industry group of companies representing system integrators, peripheral suppliers, and component suppliers decided to address the issues involved.

The SFF Committee was formed in August, 1990 and the first working document was introduced in January, 1991.

1.1 Description of Clauses

Clause 1 contains the Scope and Purpose.

Clause 2 contains Referenced and Related Standards and SFF Specifications.

Clause 3 contains the General Description.

Clause 4 contains the Glossary.

Clause 5 contains the connector and signal requirements.

Annex A is informative.

2. References

The SFF Committee activities support the requirements of the storage industry, and it is involved with several standards.

2.1 Industry Documents

The following interface standards are relevant to many SFF Specifications.

- X3.131R-1994 SCSI-2 Small Computer System Interface
- X3.253-1995 SPI (SCSI-3 Parallel Interface)
- X3.302-xxxx SPI-2 (SCSI-3 Parallel Interface -2)
- X3T10/1071 SCSI-3 Fast 20
- X3.221-1995 ATA (AT Attachment) and subsequent extensions

2.2 SFF Specifications

There are several projects active within the SFF Committee. At the date of printing document numbers had been assigned to the following projects. The status of Specifications is dependent on committee activities.
Published

The document has been approved by the members for forwarding to a formal standards body.

Published

The document has been balloted by members and is available as a published SFF Specification.

Approved

The document has been approved by ballot of the members and is in preparation as an SFF Specification.

Canceled

The project was canceled, and no Specification was Published.

Development

The document is under development at SFF.

Expired

The document has been published as an SFF Specification, and the members voted against re-publishing it when it came up for annual review.

electronic

Used as a suffix to indicate an SFF Specification which has Expired but is still available in electronic form from SFF e.g. a specification has been incorporated into a draft or published standard which is only available in hard copy.

Information

The document has no SFF project activity in progress, but it defines features in developing industry standards. The document was provided by a company, editor of an accredited standard in development, or an individual. It is provided for broad review (comments to the author are encouraged).

Submitted

The document is a proposal to the members for consideration to become an SFF Specification.

Spec # Rev List of Specifications as of May 14, 1998
-------- --- -----------------------------------
SFF-8000 SFF Committee Information
SFF-8001i E 44-pin ATA (AT Attachment) Pinouts for SFF Drives
SFF-8002i E 68-pin ATA (AT Attachment) for SFF Drives
SFF-8003 1.1 SCSI Pinouts for SFF Drives
SFF-8004 E Small Form Factor 2.5" Drives
SFF-8005 E Small Form Factor 1.8" Drives
SFF-8006 E Small Form Factor 1.3" Drives
SFF-8007 E 2mm Connector Alternatives
SFF-8008 E 68-pin Embedded Interface for SFF Drives
SFF-8009 3.1 Unitized Connector for Cabled Drives
SFF-8010 E Small Form Factor 15mm 1.8" Drives
SFF-8011i E ATA Timing Extensions for Local Bus
SFF-8012 2.0 4-Pin Power Connector Dimensions
SFF-8013 E ATA Download Microcode Command
SFF-8014 C Unitized Connector for Rack Mounted Drives
SFF-8015 E SCA Connector for Rack Mounted SFF SCSI Drives
SFF-8016 C Small Form Factor 10mm 2.5" Drives
SFF-8017 1.7 SCSI Wiring Rules for Mixed Cable Plants
SFF-8018 E ATA Low Power Modes
SFF-8019 E Identify Drive Data for ATA Disks up to 8 GB
SFF-8020i 2.6 ATA Packet Interface for CD-ROMs
SFF-8028i E - Errata to SFF-8020 Rev 2.5
SFF-8029 E - Errata to SFF-8020 Rev 1.2
SFF-8030 1.7 SFF Committee Charter
SFF-8031 C Named Representatives of SFF Committee Members
SFF-8032 1.2 SFF Committee Principles of Operation
SFF-8033i E Improved ATA Timing Extensions to 16.6 MBs
SFF-8034i E High Speed Local Bus ATA Line Termination Issues
SFF-8035i E Self-Monitoring, Analysis and Reporting Technology
SFF-8036i E ATA Signal Integrity Issues
INF-8037i 1.0 Intel Small PCI SIG

Unitized Connector for Cabled Applications
INF-8038i 1.0 Intel Bus Master IDE ATA Specification
SFF-8039i E Phoenix EDD (Enhanced Disk Drive) Specification

SFF-8040 1.2 25-pin Asynchronous SCSI Pinout
SFF-8041 C SC-A2 Connector Backend Configurations
SFF-8042 C VHDCI Connector Backend Configurations
SFF-8043 1.0 40-pin MicroSCSI Pinout
SFF-8045 3.7 40-pin SC-A2 Connector w/Parallel Selection
SFF-8046 2.7 80-pin SC-A2 Connector for SCSI Disk Drives
SFF-8047 C 40-pin SC-A2 Connector w/Serial Selection
SFF-8048 C 80-pin SC-A2 Connector w/Parallel ESI
SFF-8049 2.5 80-conductor ATA Cable Assembly

INF-8050i 1.0 Bootable CD-ROM
INF-8051i 0.2 Small Form Factor 3" Drives
INF-8052i 0.91 ATA Interface for 3" Removable Devices
INF-8053i 4.3 GBIC (Gigabit Interface Converter)
INF-8055i 2.0 SMART Application Guide for ATA Interface
SFF-8056 1.1 50-pin 2mm Connector
SFF-8057 1.2 Unitized ATA 2-plus Connector
SFF-8058 1.2 Unitized ATA 3-in-1 Connector
SFF-8059 2.3 40-pin ATA Connector

SFF-8060 1.1 SFF Committee Patent Policy
SFF-8061 1.1 Emailing drawings over the SFF Reflector
SFF-8065 C 40-pin SC-A2 Connector w/High Voltage
SFF-8066 C 80-pin SC-A2 Connector w/High Voltage
SFF-8067 1.8 40-pin SC-A2 Connector w/Bidirectional ESI
SFF-8068 1.0 Guidelines to Import Drawings into SFF Specs
SFF-8069 1.0 Fax-Access Instructions

INF-8070i 1.1 ATAPI for Rewritable Removable Media - Part 1
INF-8071i ATAPI for Rewritable Removable Media - Part 2
INF-8072i ATAPI for Rewritable Removable Media - Part 3

SFF-8080 1.2 ATAPI for CD-Recordable Media - Part 1
SFF-8081 ATAPI for CD-Recordable Media - Part 2
SFF-8082 ATAPI for CD-Recordable Media - Part 3

SFF-8090 1.0 ATAPI for DVD (Digital Video Data)

SFF-8200e 1.1 2 1/2" drive form factors (all of 82xx family)
SFF-8201e 1.3 2 1/2" drive form factor dimensions
SFF-8212e 1.2 2 1/2" drive w/SFF-8001 44-pin ATA Connector

SFF-8300e 1.1 3 1/2" drive form factors (all of 83xx family)
SFF-8301e 1.2 3 1/2" drive form factor dimensions
SFF-8302e 1.1 3 1/2" Cabled Connector locations
SFF-8332e 1.2 3 1/2" drive w/80-pin SFF-8015 SCA Connector
SFF-8337e 1.2 3 1/2" drive w/SCA-2 Connector
SFF-8342e 1.3 3 1/2" drive w/Serial Unitized Connector

SFF-8400 C Very High Density Cable Interconnect
SFF-8420 4.0 HSSDC-1 Shielded Connections
SFF-8430 1.0 Mini-MT Duplex Optical Connections
SFF-8441 11.0 VHDCI Shielded Configurations
SFF-8451 9.0 SCA-2 Unshielded Connections
SFF-8480 0.0 HSS (High Speed Serial) DB9
2.3 Sources

Copies of ANSI standards or proposed ANSI standards may be purchased from Global Engineering.

15 Inverness Way East 800-854-7179 or 303-792-2181
Englewood 303-792-2192Fx
CO 80112-5704

Copies of SFF Specifications are available by FaxAccess or by joining the SFF Committee as an Observer or Member.

14426 Black Walnut Ct 408-867-6630x303
Saratoga 408-867-2115Fx
CA 95070 FaxAccess: 408-741-1600

FaxAccess is a computer-operated service capable of faxing copies of documents selected from a menu. Anyone ordering documents over FaxAccess must be using the handset of a fax machine, as the documents are transmitted over the same line as the caller dialed in on to make the selection(s).

The increasing size of SFF Specifications has made FaxAccess less practical as a way to obtain large documents.

Although SFF does not maintain a Web site, electronic copies of documents are made available via CD_Access, a service which provides copies of all the specifications plus SFF reflector traffic. CDs are mailed every 2 months as part of the document service, and provide the letter ballot and paper copies of what was distributed at the meeting as well as the meeting minutes.

If this is the last page of an SFF Specification, it means that the latest copy of this specification is not available via FaxAccess. To obtain a copy, you may join the SFF Committee as a Member or an Observer, and sign up for either paper or electronic copies.

3. General Description

The environment for this SFF Specification is any disk drive which wants to provide a common connector structure to assist OEMs in cabling of configurations.

4. Definitions and Conventions

4.1 Definitions

For the purpose of SFF Specifications, the following definitions apply:

4.1.1 Optional: This term describes features which are not required by the SFF Specification. However, if any feature defined by the SFF Specification is implemented, it shall be done in the same way as defined by the Specification.
4.1.2 Reserved: Where this term is used for bits, bytes, fields and code values; the bits, bytes, fields and code values are set aside for future standardization. The default value shall be zero. The originator is required to define a Reserved field or bit as zero, but the receiver should not check Reserved fields or bits for zero.

4.1.3 VU (Vendor Unique): This term is used to describe bits, bytes, fields, pins, signals, code values and features which are not described in this SFF Specification, and may be used in a way that varies between vendors.

4.1.4 VU Mode: A mode of execution by the drive in which its use is not defined by this SFF Specification. The means by which a vendor invokes vendor unique operations within a drive is defined by this SFF Specification.

4.2 Conventions

Certain terms used herein are the proper names of signals. These are printed in uppercase to avoid possible confusion with other uses of the same words; e.g., ATTENTION. Any lower-case uses of these words have the normal American-English meaning.

A number of conditions, commands, sequence parameters, events, English text, states or similar terms are printed with the first letter of each word in uppercase and the rest lower-case; e.g., In, Out, Request Status. Any lower-case uses of these words have the normal American-English meaning.

The American convention of numbering is used i.e., the thousands and higher multiples are separated by a comma and a period is used as the decimal point. This is equivalent to the ISO convention of a space and comma.

<table>
<thead>
<tr>
<th>American:</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>1,323,462.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISO:</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>1 323 462,9</td>
<td></td>
</tr>
</tbody>
</table>
5. Signals

This Specification relies upon the electrical and mechanical characteristics of SCSI-2. There are three connectors in the Unitized Connector.

- 68-pin SCSI-3 P-Cable Connector
- 4-pin Power Connector
- 12-pin 2mm Auxiliary Connector

5.1 Signal Conventions

Signal names are shown in all upper case letters. Signals can be asserted (active, true) in either a high (more positive voltage) or low (less positive voltage) state. A dash character (−) at the end of a signal name indicates it is asserted at the low level (active low). No dash at the end of a signal name indicates it is asserted high (active high). An asserted signal may be driven high or low by an active circuit, or it may be allowed to be pulled to the correct state by the bias circuitry.

Control signals that are asserted for one function when high and asserted for another function when low are named with the asserted high function name followed by a slash character (/), and the asserted low function name followed with a dash (−) e.g. a signal named BITENA/BITCLR− would enable a bit when high and clear a bit when low. All signals are TTL compatible unless otherwise noted. Negated means that the signal is driven by an active circuit to the state opposite to the asserted state (inactive, or false) or may be simply released (in which case the bias circuitry pulls it inactive, or false), at the option of the implementor.

5.2 Pinouts

The pinouts for the P-Cable connector are specified by the SCSI-3 SPI standard (see 2). Table 5-1 shows the signals and relationships such as direction for the Power connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Hst</th>
<th>Dir</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+12V</td>
<td>x</td>
<td>−</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>+12V Return</td>
<td>x</td>
<td>−</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>+5V Return</td>
<td>x</td>
<td>−</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>+5V</td>
<td>x</td>
<td>−</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 5-2 shows the signals and relationships such as direction for the Auxiliary Connector.

NOTE: Ambiguities in the original proposal for this connector resulted in some manufacturers implementing different pin assignments prior to the finalization of this Specification.
TABLE 5-2 SIGNAL ASSIGNMENTS FOR AUXILIARY CONNECTOR

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Hst</th>
<th>Dir</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEL0-</td>
<td>SCSI ID Sel 0</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>XTFALT-</td>
<td>External fault</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SEL1-</td>
<td>SCSI ID Sel 1</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VUNIQ-</td>
<td>Vendor Unique</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SEL2-</td>
<td>SCSI ID Sel 2</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SPSYNC-</td>
<td>Spindle Synch</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SEL3-</td>
<td>SCSI ID Sel 3</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>XTACTV-</td>
<td>External activity</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ENTERM-</td>
<td>Enable termination</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>GROUND</td>
<td>Ground</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+5V</td>
<td>+5V</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FAULT-</td>
<td>Drive fault</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Dir column indicates the direction of the signal between host and device. An x in the Hst column means this signal shall be supported by the Host. An x in the Dev column means this signal shall be supported by the device. An o means this signal is Optional. If there is nothing in the Dev column for a pin location, then no connection should be made to that pin.

5.2.1 SCSI ID Sel 0

When negated, this signal shall have a value of 0 and when asserted shall have a value of 1 for the purposes of selection and arbitration.

This signal shall be latched within 250 msec of the application of power or optionally of the negation of RST within the device. This input shall source no more than 4.8mA when the input signal is asserted.

If SCSI ID Sel 0 is intended to be asserted, the host shall provide a low impedance connection from SEL0- to XTFALT- or GROUND through an appropriate means.

5.2.2 External fault

This signal is an open-collector output capable of sinking, intended to drive an LED to indicate an external fault condition has occurred.

This signal shall be held asserted for 250 msec following the application of power or optionally, the negation of RST during initialization while the SCSI ID pin is read (if this signal is connected to an LED, this action can cause the LED to light briefly). When asserted, this signal shall present a DC impedance of 150 ohms +/-20% to ground.

Provision of this signal is optional. However, if it is not provided, the pin shall meet the above requirements during initialization and have a high impedance after initialization.

5.2.3 SCSI ID Sel 1

When negated, this signal shall have a value of 0 and when asserted shall have a value of 2 for the purposes of selection and arbitration.
This signal shall be latched within 250 msec of the application of power or optionally of the negation of RST within the device. This input shall source no more than 4.8mA when the input signal is asserted.

If SCSI ID Sel 1 is intended to be asserted, the host shall provide a low impedance connection from SEL1- to VUNIQ- or GROUND through an appropriate means.

5.2.4 Vendor Unique

This signal is an open-collector output available for Vendor Unique usage. This signal shall be held asserted for 250 msec following the application of power or optionally, the negation of RST during initialization while the SCSI ID pin is read (if this signal is connected to an LED, this action can cause the LED to light briefly). When asserted, this signal shall present a DC impedance of 150 ohms +/-20% to ground.

Provision of this signal is optional. However, if it is not provided, the pin shall meet the above requirements during initialization and have a high impedance after initialization.

5.2.5 SCSI ID Sel 2

When negated, this signal shall have a value of 0 and when asserted shall have a value of 4 for the purposes of selection and arbitration. This signal shall be latched within 250 msec of the application of power or optionally of the negation of RST within the device. This input shall source no more than 4.8mA when the input signal is asserted.

If SCSI ID Sel 2 is intended to be asserted, the host shall provide a low impedance connection from SEL2- to SPSYNC- or GROUND through an appropriate means.

5.2.6 Spindle Synch

This signal is an open-collector output which is used as a spindle synchronization reference. This signal shall be held asserted for 250 msec following the application of power or optionally, the negation of RST during initialization while the SCSI ID pin is read (if this signal is connected to the Spindle Synch of other drives, this action can cause the synch function to be interrupted briefly). When asserted, this signal shall present a DC impedance of 150 ohms +/-20% to ground.

Provision of this signal is optional. However, if it is not provided, the pin shall meet the above requirements during initialization and have a high impedance after initialization. Typically, spindle synchronization is only effective if all drives connected through this pin are identical in make and model.

5.2.7 SCSI ID Sel 3

When negated, this signal shall have a value of 0 and when asserted shall have a value of 8 for the purposes of selection and arbitration. This signal shall be latched within 250 msec of the application of power or optionally of the negation of RST within the device. This input shall source no more than 4.8mA when the input signal is asserted. If SCSI ID Sel 3 is intended to be asserted, the host shall provide a low impedance connection from SEL3- to XTACTV- or GROUND through an appropriate means.
5.2.8 External activity

This signal is an open-collector output intended to drive an LED to indicate the device is active. This signal shall be held asserted for 250 msec following the application of power or optionally, the negation of RST during initialization while the SCSI ID pin is read (if this signal is connected to an LED, this action can cause the LED to light briefly). When asserted, this signal shall present a DC impedance of 150 ohms +/-20% to ground. Provision of this signal is optional. However, if it is not provided, the pin shall meet the above requirements during initialization and have a high impedance after initialization.

5.2.9 Enable termination

When connected to ground, this optional signal shall cause the drive to enable its terminators. If this signal is not connected, the drive shall disable its terminators.

5.2.10 Ground

This signal shall be connected to logic ground.

5.2.11 +5V

This signal provides 5V of DC power to drive LEDs, and should be limited to a maximum value of 1A.

5.2.12 Drive fault

This signal is normally held negated. Assertion of this signal shall cause the drive to stop any media-altering activity, which may result in the drive asserting XTFALT- or VUNIQ- signals, or both. This input shall source no more than 4.8mA when the input signal is asserted.

This signal is intended to be used as a power failure warning and/or as a write protect input. Provision of this signal is optional. If this signal is not provided, the pin shall be open.

NOTE: This signal can be used as a write-fault input in addition to a fault input.

The assertion of this input signal, when write commands are active, may cause data loss. However, judicial use of this input signal under failure conditions can minimize the degree of data loss.
6. Physical Configuration

6.1 Disk Drive Parameters

Figure 6-1 shows the orientation of the Unitized Connector relative to the form factor of the drive. No dimensions are shown as the connector can fit on more than one form factor. Although the connector is shown at the bottom of the drive, this is only illustrative. If the connector were at the top of the drive it shall lie in the same plane i.e. it shall not be reversed.

FIGURE 6-1 ORIENTATION OF UNITIZED CONNECTOR
6.2 Connector Specifications

The nominal dimensions for the mating interface are shown in Figure 6-2. These dimensions are the most common in use, but may be different in some implementations.

![Diagram of Unitized Connector](image)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>90.22 +/- 0.3</td>
</tr>
<tr>
<td>A3</td>
<td>8.01 +/- 0.1</td>
</tr>
<tr>
<td>A4</td>
<td>34.74 +/- 0.1</td>
</tr>
<tr>
<td>A5</td>
<td>19.52 +/- 0.1</td>
</tr>
</tbody>
</table>

FIGURE 6-2 UNITIZED CONNECTOR
Figure 6-3 includes features that provide alignment guidance, and Table 6-3 contains the dimensions.

TABLE 6-1 ALTERNATIVE CONNECTOR

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>101.45</td>
<td>3.994</td>
</tr>
<tr>
<td>A 2</td>
<td>95.92</td>
<td>3.776</td>
</tr>
<tr>
<td>A 3</td>
<td>2.73</td>
<td>0.107</td>
</tr>
<tr>
<td>A 4</td>
<td>7.71</td>
<td>0.303</td>
</tr>
<tr>
<td>A 5</td>
<td>54.93</td>
<td>2.163</td>
</tr>
<tr>
<td>A 6</td>
<td>8.35</td>
<td>0.328</td>
</tr>
<tr>
<td>A 7</td>
<td>16.5</td>
<td>0.65</td>
</tr>
<tr>
<td>A 8</td>
<td>76.15</td>
<td>2.998</td>
</tr>
<tr>
<td>A 9</td>
<td>59.29</td>
<td>2.334</td>
</tr>
<tr>
<td>A10</td>
<td>52.61</td>
<td>2.071</td>
</tr>
<tr>
<td>A11</td>
<td>3.25</td>
<td>0.128</td>
</tr>
<tr>
<td>A12</td>
<td>8.59</td>
<td>0.338</td>
</tr>
<tr>
<td>A13</td>
<td>8.75</td>
<td>0.344</td>
</tr>
<tr>
<td>A14</td>
<td>5.90</td>
<td>0.23</td>
</tr>
<tr>
<td>A15</td>
<td>R4.00</td>
<td>R0.157</td>
</tr>
<tr>
<td>A16</td>
<td>R3.25</td>
<td>R0.128</td>
</tr>
<tr>
<td>A17</td>
<td>3.2</td>
<td>0.126</td>
</tr>
<tr>
<td>A18</td>
<td>19.48</td>
<td>0.767</td>
</tr>
<tr>
<td>A19</td>
<td>34.74</td>
<td>1.368</td>
</tr>
<tr>
<td>T 1</td>
<td>+/- .15</td>
<td>.006</td>
</tr>
<tr>
<td>T 2</td>
<td>+/- .10</td>
<td>.004</td>
</tr>
<tr>
<td>T 3</td>
<td>+0.0/-0.1</td>
<td>+0.0/-0.004</td>
</tr>
</tbody>
</table>

FIGURE 6-3 ALTERNATIVE UNITIZED CONNECTOR
Annex A. Application Considerations (informative).

The unitized connector may be utilized in a number of environments, such as those described.

A.1 Stand-Alone

The drive is connected to the Power and SCSI-3 P-Cable connectors, and 2mm jumpers in the Auxiliary connector are used for drive configuration:

- Set SCSI ID
- Select termination
- Power the LEDs (if any)

A.2 Remote

The drive is connected to all three connectors, with the Auxiliary cable connecting the drive to a configuration control board.

The control board may choose to:

- Set SCSI ID by using the supplied Ground signal to assert the desired SELx signal(s) (the remaining SELx signal(s) will be floating).
- Use the 5V output to power LEDs.
- Tie all the SPSYNC- signals together if spindle synchronization is wanted.
- Activate the terminator by using the supplied Ground signal to assert ENTERM- on the last cabled device
- Create a write-protect function by using the supplied Ground signal to assert XTFALT-.

A.3 Racked

Although no provision has been made for guide pins and other assistance for blind mating applications, a common backplane may be used to terminate all three connectors. The SCSI ID would depend on the position of the device within the backplane, and the integrator may choose to:

- Set SCSI ID by using the supplied Ground signal to assert the desired SELx signal(s) (the remaining SELx signal(s) will be floating).
- Use the 5V output to power LEDs located on a panel somewhere in the cabinet.
- Tie all the SPSYNC- signals together if spindle synchronization is wanted.
- Activate the terminator by using the supplied Ground signal to assert ENTERM- on the device located last on the backplane.
- Create a write-protect function by using the supplied Ground signal to assert XTFALT-.