This document was developed by the SFF Committee prior to it becoming the SFF TA (Technology Affiliate) TWG (Technical Working Group) of the SNIA (Storage Networking Industry Association) in 2016.

The information below should be used instead of the equivalent herein.

POINTS OF CONTACT: SFF TA TWG Chair Email: sff-chair@snia.org.

Suggestions for improvement of this specification are welcome and should be submitted to http://www.snia.org/feedback.

If you are interested in participating in the activities of the SFF TA TWG, additional information and the membership application can be found at: http://www.snia.org/sff.
SFF Committee documentation may be purchased in hard copy or electronic form. SFF specifications are available at ftp://ftp.seagate.com/sff

SFF Committee

SFF-8054 Specification for

Automation Drive Interface Connector

Rev 0.2 May 6, 2004

Secretariat: SFF Committee

Abstract: This specification defines the ADI (Automation Drive Interface) cable to board connectors.

This specification provides a common specification for systems manufacturers, system integrators, and suppliers of removable medium drives and medium changers. This is an internal working specification of the SFF Committee, an industry ad hoc group.

This specification is made available for public review, and written comments are solicited from readers. Comments received by the members will be considered for inclusion in future revisions of this specification.

The description of a connector in this specification does not assure that the specific component is actually available from connector suppliers. If such a connector is supplied it must comply with this specification to achieve interoperability between suppliers.

Support: This specification is supported by the identified member companies of the SFF Committee.

POINTS OF CONTACT:

Jerry D. Kachlic I. Dal Allan
Technical Editor Chairman SFF Committee
Molex Incorporated ENDL
2216 Wellington Court 14426 Black Walnut Court
Lisle, IL 60532 Saratoga, CA 95070
Ph: 630-718-5991 Fx: 630-527-4567 Ph: 408-867-6630 Fx: 408-867-2115
Email: jerry.kachlic@molex.com Email: endlcom@acm.org
EXPRESSION OF SUPPORT BY MANUFACTURERS

The following member companies of the SFF Committee voted in favor of this industry specification.

Dell
ENDL
Hewlett Packard
Intel
Molex
Seagate
Sun Microsystems
Tyco AMP

The following member companies of the SFF Committee voted to abstain on this industry specification.

Adaptec
Amphenol
FCI/Berg
Foxconn Int'l
Fujitsu CPA
Hitachi GST
IBM
Infineon
Madison Cable
Maxtor
Nexans
Toshiba America
Unisys
Vitesse Semi

The user's attention is called to the possibility that implementation to this Specification may require use of an invention covered by patent rights. By distribution of this Specification, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. The patent holder has filed a statement of willingness to grant a license under these rights on reasonable and non-discriminatory terms and conditions to applicants desiring to obtain such a license.
If you are not a member of the SFF Committee, but you are interested in participating, the following principles have been reprinted here for your information.

PRINCIPLES OF THE SFF COMMITTEE

The SFF Committee is an ad hoc group formed to address storage industry needs in a prompt manner. When formed in 1990, the original goals were limited to defining de facto mechanical envelopes within which disk drives can be developed to fit compact computer and other small products.

Adopting a common industry size simplifies the integration of small drives (2 1/2" or less) into such systems. Board-to-board connectors carrying power and signals, and their position relative to the envelope are critical parameters in a product that has no cables to provide packaging leeway for the integrator.

In November 1992, the SFF Committee objectives were broadened to encompass other areas which needed similar attention, such as pinouts for interface applications, and form factor issues on larger disk drives. SFF is a forum for resolving industry issues that are either not addressed by the standards process or need an immediate solution.

Specifications created by the SFF Committee are expected to be submitted to bodies such as EIA (Electronic Industries Association) or an ASC (Accredited Standards Committee). They may be accepted for separate standards, or incorporated into other standards activities.

The principles of operation for the SFF Committee are not unlike those of an accredited standards committee. There are 3 levels of participation:

- Attending the meetings is open to all, but taking part in discussions is limited to member companies, or those invited by member companies.
- The minutes and copies of material which are discussed during meetings are distributed only to those who sign up to receive documentation.
- The individuals who represent member companies of the SFF Committee receive documentation and vote on issues that arise. Votes are not taken during meetings, only guidance on directions. All voting is by letter ballot, which ensures all members an equal opportunity to be heard.

Material presented at SFF Committee meetings becomes public domain. There are no restrictions on the open mailing of material presented at committee meetings. In order to reduce disagreements and misunderstandings, copies must be provided for all agenda items that are discussed. Copies of the material presented, or revisions if completed in time, are included in the documentation mailings.

The sites for SFF Committee meetings rotate based on which member companies volunteer to host the meetings. Meetings have typically been held during the ASC T10 weeks.

The funds received from the annual membership fees are placed in escrow, and are used to reimburse ENDL for the services to manage the SFF Committee.
If you are not receiving the documentation of SFF Committee activities or are interested in becoming a member, the following signup information is reprinted here for your information.

Membership includes voting privileges on SFF Specs under development.

CD Access Electronic documentation contains:
- Minutes for the year-to-date plus all of last year
- Email traffic for the year-to-date plus all of last year
- The current revision of all the SFF Specifications, as well as any previous revisions distributed during the current year.

Meeting documentation contains:
- Minutes for the current meeting cycle.
- Copies of Specifications revised during the current meeting cycle.

Each electronic mailing obsoletes the previous mailing of that year e.g. July replaces May. To build a complete set of archives of all SFF documentation, retain the last SFF CD_Access mailing of each year.

Name: ____________________________ Title: __________________________
Company: ___
Address: __
Phone: ____________________________ Fax: ____________________________
Email: __

Please register me with the SFF Committee for one year.

___ Voting Membership w/Electronic documentation $ 2,160
___ Voting Membership w/Meeting documentation $ 1,800
___ Non-voting Observer w/Electronic documentation $ 660 U.S.
 $ 760 Overseas
___ Non-voting Observer w/Meeting documentation $ 300 U.S.
 $ 400 Overseas

Check Payable to SFF Committee for $________ is Enclosed

Please invoice me for $________ on PO #: ___________________

MC/Visa/AmX ________________________________ Expires ________
SFF Committee 408-867-6630
14426 Black Walnut Ct 408-867-2115Fx
Saratoga CA 95070 endlcom@acm.org
Foreword

When 2 1/2" diameter disk drives were introduced, there was no commonality on external dimensions e.g. physical size, mounting locations, connector type, connector location, between vendors.

The first use of these disk drives was in specific applications such as laptop portable computers in which space was at a premium and time to market with the latest machine was an important factor. System integrators worked individually with vendors to develop the packaging. The result was wide diversity, and with space being such a major consideration in packaging, it was not possible to replace one vendor's drive with a competitive product.

The desire to reduce disk drive sizes to even smaller dimensions such as 1.8" and 1.3" made it likely that devices would become even more constrained in dimensions because of a possibility that such small devices could be inserted into a socket, not unlike the method of retaining semiconductor devices.

The problems faced by integrators, device suppliers, and component suppliers led to the formation of an industry ad hoc group to address the marketing and engineering considerations of the emerging new technology in disk drives. After two informal gatherings on the subject in the summer of 1990, the SFF Committee held its first meeting in August.

During the development of the form factor definitions, other activities were suggested because participants in the SFF Committee faced problems other than the physical form factors of disk drives. In November 1992, the members approved an expansion in charter to address any issues of general interest and concern to the storage industry. The SFF Committee became a forum for resolving industry issues that are either not addressed by the standards process or need an immediate solution.

At the same time, the principle was adopted of restricting the scope of an SFF project to a narrow area, so that the majority of specifications would be small and the projects could be completed in a rapid timeframe. If proposals are made by a number of contributors, the participating members select the best concepts and uses them to develop specifications which address specific issues in emerging storage markets.

Those companies which have agreed to support a specification are identified in the first pages of each SFF Specification. Industry consensus is not an essential requirement to publish an SFF Specification because it is recognized that in an emerging product area, there is room for more than one approach. By making the documentation on competing proposals available, an integrator can examine the alternatives available and select the product that is felt to be most suitable.

Suggestions for improvement of this specification will be welcome. They should be sent to the SFF Committee, 14426 Black Walnut Ct, Saratoga, CA 95070.

The development work on this specification was done by the SFF Committee, an industry group. The membership of the committee since its formation in 1990 has included a mix of companies which are leaders across the industry.
1. Scope

This document defines the interface for a composite connector set for serial signals. This connector set is intended for internal use with Automation/Drive Interface – Transport Protocol systems. The connector set is referred to as the ADI Connector.

The SFF Committee was formed in August, 1990 to broaden the applications for storage devices, and is an ad hoc industry group of companies representing system integrators, peripheral suppliers, and component suppliers.

Media changer (automation) devices use a private communication link for monitoring and controlling the removable medium devices (drives) installed in them. The INCITS T10 Automation/Drive Interface – Transport Protocol (ADT) standard specifies a protocol and physical layer for transporting commands, data, and status between automation devices and the drives. The ADI connector is intended to be used in the removable medium device (typically a tape drive) for connection of the cable to the automation device. The connector may also be used in the automation device for its end of the cable.

1.1 Description of Clauses

Clause 1 contains the Scope and Purpose.
Clause 2 contains Referenced and Related Standards and SFF Specifications.
Clause 3 contains the General Description.
Clause 4 contains the Connector Detail.

2. References

The SFF Committee activities support the requirements of the storage industry, and it is involved with several standards.

2.1 Industry Documents

The following interface standard is relevant to this SFF Specification.

T10/1557 Automation/Drive Interface – Transport Layer (ADT)

2.2 SFF Specifications

There are several projects active within the SFF Committee. At the date of printing specification numbers had been assigned to the following projects. The status of Specifications is dependent on committee activities.

F = Forwarded The document has been approved by the members for forwarding to a formal standards body.
P = Published The document has been ballotated by members and is available as a published SFF Specification.
A = Approved The document has been approved by ballot of the members and is in preparation as an SFF Specification.
C = Canceled The project was canceled, and no Specification was Published.
D = Development The document is under development at SFF.
E = Expired The document has been published as an SFF Specification, and the members voted against re-publishing it when it came up for review.
a = archive Used as a suffix to indicate an SFF Specification which
has been Archived. This specification will always be
available at the ftp site and new development effort
in the subject area shall be done under a new number.

e = electronic Used as a suffix to indicate an SFF Specification which
has Expired but is still available in electronic form
from SFF e.g. a specification has been incorporated
into a draft or published standard which is only
available in hard copy.

i = Information The document has no SFF project activity in progress,
but it defines features in developing industry
standards. The document was provided by a company,
editor of an accredited standard in development, or an
individual. It is provided for broad review (comments
to the author are encouraged). As the copyright on such
documents is retained by the author, the INF or 'i'
specifications cannot be freely copied for distribution.

s = submitted The document is a proposal to the members for
consideration to become an SFF Specification.

Spec # Rev List of Specifications as of July 16, 2004
------- ---- --
SFF-8000 E SFF Committee Information
INF-8001i E 44-pin ATA (AT Attachment) Pinouts for SFF Drives
INF-8002i E 68-pin ATA (AT Attachment) for SFF Drives
SFF-8003 E SCSI Pinouts for SFF Drives
SFF-8004 E Small Form Factor 2.5" Drives
SFF-8005 E Small Form Factor 1.8" Drives
SFF-8006 E Small Form Factor 1.3" Drives
SFF-8007 E 2mm Connector Alternatives
SFF-8008 E 68-pin Embedded Interface for SFF Drives
SFF-8009 4.1 Unitized Connector for Cabled Drives
SFF-8010 E Small Form Factor 15mm 1.8" Drives
INF-8011i E ATA Timing Extensions for Local Bus
SFF-8012 3.0 4-Pin Power Connector Dimensions
SFF-8013 C ATA Download Microcode Command
SFF-8014 C Unitized Connector for Rack Mounted Drives
SFF-8015 E SCA Connector for Rack Mounted SFF SCSI Drives
SFF-8016 E Small Form Factor 10mm 2.5" Drives
SFF-8017 E SCSI Wiring Rules for Mixed Cable Plants
SFF-8018 E ATA Low Power Modes
SFF-8019 E Identify Drive Data for ATA Disks up to 8 GB
INF-8020i E ATA Packet Interface for CD-ROMs
SFF-8025 0.6 SFF Committee Specification Categories
INF-8028i E - Errata to SFF-8020 Rev 2.5
SFF-8029 E - Errata to SFF-8020 Rev 1.2
SFF-8030 1.9 SFF Committee Charter
SFF-8031 E Named Representatives of SFF Committee Members
SFF-8032 1.6 SFF Committee Principles of Operation
INF-8033i E Improved ATA Timing Extensions to 16.6 MBs
INF-8034i E High Speed Local Bus ATA Line Termination Issues
INF-8035i E Self-Monitoring, Analysis & Reporting Technology
INF-8036i E ATA Signal Integrity Issues
INF-8037i E Intel Small PCI SIG
INF-8038i E Intel Bus Master IDE ATA Specification
INF-8039i E Phoenix EDD (Enhanced Disk Drive) Specification
SFF-8040 1.2 25-pin Asynchronous SCSI Pinout
SFF-8041 C SCA-2 Connector Backend Configurations
SFF-8042 C VHDCI Connector Backend Configurations
SFF-8043 E 40-pin MicroSCSI Pinout
SFF-8045 4.5 40-pin SCA-2 Connector w/Parallel Selection
SFF-8046 E 80-pin SCA-2 Connector for SCSI Disk Drives
SFF-8047 C 40-pin SCA-2 Connector w/Serial Selection
SFF-8048 C 80-pin SCA-2 Connector w/Parallel ESI
SFF-8049 E 80-conductor ATA Cable Assembly

INF-8050i 1.0 Bootable CD-ROM
INF-8051i E Small Form Factor 3" Drives
INF-8052i E ATA Interface for 3" Removable Devices
SFF-8053 5.5 GBIC (Gigabit Interface Converter)
SFF-8054 0.2 Automation Drive Interface Connector
INF-8055i E SMART Application Guide for ATA Interface
SFF-8056 C 50-pin 2mm Connector
SFF-8057 E Unitized ATA 2-plus Connector
SFF-8058 E Unitized ATA 3-in-1 Connector
SFF-8059 E 40-pin ATA Connector

SFF-8060 1.1 SFF Committee Patent Policy
SFF-8061 E Emailing drawings over the SFF Reflect
SFF-8062 Rolling Calendar of SSWGs and Plenaries
SFF-8064 Unshielded HD Cable/Board Connector System
SFF-8065 C 40-pin SCA-2 Connector w/High Voltage
SFF-8066 C 80-pin SCA-2 Connector w/High Voltage
SFF-8067 3.2 40-pin SCA-2 Connector w/Bidirectional ESI
INF-8068i E Guidelines to Import Drawings into SFF Specs
SFF-8069 C 20-pin SCA-2 for GBIC Applications
INF-8070i 1.3 ATAPI for Rewritable Removable Media
SFF-8072 1.2 80-pin SCA-2 for Fibre Channel Tape Applications
SFF-8073 C 20-pin SCA-2 for GBIC Applications
INF-8074i 1.0 SFP (Small Formfactor Pluggable) Transceiver
SFF-8075 1.0 PCI Card Version of SFP Cage
SFF-8076 - SFP Additional IDs
INF-8077i 3.1 XFP (10 Gbs Small Form Factor Pluggable Module)
SFF-8078 C XFP-E
SFF-8079 1.6 SFP Rate and Application Selection
SFF-8080 E ATAPI for CD-Recordable Media
SFF-8082 3.1 Labeling of Ports and Cable Assemblies
SFF-8085 0.9 100 Mbs Small Formfactor Transceivers
SFF-8089 1.2 SFP Rate and Application Selection Values
INF-8090i 5.5 ATAPI for DVD (Digital Video Data)

SFF-8101 C 3 Gbs and 4 Gbs Signal Characteristics
SFF-8110 C 5V Parallel 1.8" drive form factor
SFF-8111 1.3 1.8" drive form factor (60x70mm)
SFF-8122 1.8" (60x70mm) w/SCA-2 Connector
SFF-8120 2.6 1.8" drive form factor (78x54mm)
SFF-8123 2.1 1.8" (60x70mm) w/Serial Attachment Connector

SFF-8200e 1.1 2 1/2" drive form factors (all of 82xx family)
SFF-8201 2.3 2 1/2" drive form factor dimensions
SFF-8212e 1.2 2 1/2" drive w/SFF-8001 44-pin ATA Connector
SFF-8221 3.5 Pre-Aligned 2.5" Drive >10mm Form Factor
SFF-8222 2.1 2.5" Drive w/SCA-2 Connector
SFF-8223 2.2 2.5" Drive w/Serial Attachment Connector
SFF-8225 C 2.5" Single Voltage Drive

SFF-8300 1.2 3 1/2" drive form factors (all of 83xx family)
SFF-8301 1.4 3 1/2" drive form factor dimensions
SFF-8302e 1.1 3 1/2" Cabled Connector locations
SFF-8323 1.3 3 1/2" drive w/Serial Attachment Connector
SFF-8332e E 3 1/2" drive w/80-pin SFF-8015 SCA Connector
SFF-8337e E 3 1/2" drive w/SCA-2 Connector
SFF-8342e 1.3 3 1/2" drive w/Serial Unitized Connector
INF-8350i E 3 1/2" Packaged Drives

SFF-8400 C VHDCI (Very High Density Cable Interconnect)
SFF-8410 16.1 High Speed Serial Testing for Copper Links
INF-8411 1.0 High Speed Serial Testing for Backplanes
SFF-8412 12.2 HSOI (High Speed Optical Interconnect) Testing
SFF-8415 4.1 HPEI (High Performance Electrical Interconnect)
SFF-8416 10.0 HPEI Bulk Cable Measurement/Performance Regmnts

SFF-8420 11.1 HSSDC-1 Shielded Connections
SFF-8421 2.4 HSSDC-2 Shielded Connections
SFF-8422 C FCI Shielded Connections
SFF-8423 C Molex Shielded Connections
SFF-8424 0.5 Dual Row HSSDC-2 Shielded Connections
SFF-8425 1.4 Single Voltage 12V Drives
SFF-8426 HSSDC Double Width
SFF-8429 Signal Specification Architecture for HSS Links

SFF-8430 4.1 MT-RJ Duplex Optical Connections
SFF-8441 14.1 VHDCI Shielded Configurations
SFF-8451 10.1 SCA-2 Unshielded Connections
SFF-8452 3.1 Glitch Free Mating Connections for Multidrop ApS
SFF-8453 Shielded High Speed Serial connectors

SFF-8460 1.2 HSS Backplane Design Guidelines
SFF-8464 Improved MM HSS Optical Link Performance
SFF-8470 2.9 Multi Lane Copper Connector
SFF-8471 C 2FP Multi Lane Copper Connector
SFF-8472 9.5 Diagnostic Monitoring Interface for Optical Xcvrs
INF-8475i 2.2 XPAK Small Formfactor Pluggable Receiver
SFF-8480 2.1 HSS (High Speed Serial) DB9 Connections
SFF-8482 1.4 Internal Serial Attachment Connector
SFF-8483 C External Serial Attachment Connector
SFF-8484 0.4 Multi Lane Internal Serial Attachment Connector
SFF-8485 0.4 Serial GPIO (General Purpose Input/Output) Bus

SFF-8500e 1.1 5 1/4" drive form factors (all of 85xx family)
SFF-8501e 1.1 5 1/4" drive form factor dimensions
SFF-8508e 1.1 5 1/4" ATAPI CD-ROM w/audio connectors
SFF-8523 1.2 5 1/4" drive w/Serial Attachment Connector
SFF-8551 3.2 5 1/4" CD Drives form factor
SFF-8523 0.5 5 1/4" Slimline Optical Drive Form Factor
SFF-8572 C 5 1/4" Tape form factor
SFF-8610 C SDX (Storage Device Architecture)

2.3 Sources
Copies of ANSI standards or proposed ANSI standards may be purchased from Global Engineering.

15 Inverness Way East 800-854-7179 or 303-792-2181
Englewood 303-792-2192Fx
CO 80112-5704

Copies of SFF Specifications are available by joining the SFF Committee as an Observer or Member or by download at ftp://ftp.seagate.com/sff

14426 Black Walnut Ct 408-867-6630x303
Saratoga 408-867-2115Fx
CA 95070
3. General Description

This SFF specification defines a composite connector set for serial signals to be used in a removable medium device (e.g., a tape drive) installed in an automation device (e.g., tape library). The connectors are intended to be used to attach a cable from the automation device to the removable medium device. They may also be used to attach the cable to the automation device.

The physical dimensions of the connectors are defined herein; the signal names assigned to the pins, the electrical characteristics of the connectors, and the communications protocol used for communication through the connectors are beyond the scope of this standard. One possible specification of those attributes may be found in the INCITS/T10 ADT standard cited above.
4. Connector Detail

Two connectors are specified, a fixed board connector and a free cable connector.

4.1 ADI fixed board connector

The fixed board connector (see Figure 1) is intended to be attached to a circuit board in a removable medium device. It may also be used in the automation device containing the removable medium device.

The attachment of the connector to the circuit board (e.g., surface mount or through-hole) is beyond the scope of this standard. The location of the connector in a removable medium or automation device is beyond the scope of this standard.
4.1 ADI free cable connector

The free cable connector is intended to mate with the fixed board connector. See Figure 2.

When the ADI free cable connector is used on both ends of a cable, like-numbered pins shall be connected together, i.e., pin 1 on end A is wired to pin 1 on end B, pin 2 on end A to pin 2 on end B, etc.