
This specification was developed by the SFF Committee prior to it becoming the SFF TA (Technology Affiliate) TWG (Technical Working Group) of SNIA (Storage Networking Industry Association).

The information below should be used instead of the equivalent herein.

POINTS OF CONTACT:

Chairman SFF TA TWG
Email: SFF-Chair@snia.org

If you are interested in participating in the activities of the SFF TWG, the membership application can be found at:
http://www.snia.org/sff/join

The complete list of SFF Specifications which have been completed or are currently being worked on can be found at:
http://www.snia.org/sff/specifications/SFF-8000.TXT

The operations which complement the SNIA's TWG Policies & Procedures to guide the SFF TWG can be found at:
http://www.snia.org/sff/specifications/SFF-8032.PDF

Suggestions for improvement of this specification will be welcome, they should be submitted to:
http://www.snia.org/feedback
SFF Committee documentation may be purchased in electronic form. SFF specifications are available at ftp://ftp.seagate.com/sff

SFF Committee

SFF-8670

Specification for

Multifunction 10 Gb/s 1X Shielded Connector (HSMIO)

Rev 0.5            Sept 28, 2014

Secretariat:  SFF Committee

Abstract:  This specification defines the mechanical specifications and general requirements of the HSMIO (High Speed Multifunction I/O) connector: a miniature shielded input/output connector supporting one differential channel (Tx and Rx) operating at data rates up to 10Gb/s, one low speed single ended lane and power. This connector is initially intended for use in phones, tablets, notebooks and desktop PCs.

This specification provides a common reference for systems manufacturers, system integrators and connector and cable manufacturers. This is an internal working specification of the SFF Committee, an industry ad hoc group.

This specification is made available for public review, and written comments are solicited from readers. Comments received will be considered for inclusion in future revisions of this specification.

The description of a connector in this specification does not assure that the specific component is actually available from a connector supplier. If such a connector is supplied, it must comply with this specification to achieve interoperability among suppliers.

Support: This specification is supported by the identified member companies of the SFF Committee.

POINTS OF CONTACT:

Scott Shuey                                    I. Dal Allan
TE Connectivity                                 Chairman SFF Committee
2800 Fulling Mill Rd.                          14426 Black Walnut Court
Middletown, PA  17057                          Saratoga  CA  95070
USA                                           USA
Ph:717-986-5678                                Ph: 408-867-6630
Email:scott.shuey@te.com                       endlcom@acm.org
EXPRESSION OF SUPPORT BY MANUFACTURERS

The following member companies of the SFF Committee voted in favor of this industry specification.

All Best
Amphenol
EMC
FCI
Hewlett Packard
HGST
Luxshare-ICT
Molex
Sandisk
Shenzhen
TE Connectivity
Volex

The following member companies of the SFF Committee voted to abstain on this industry specification.

Applied Micro
Avago
Broadcom
Dell Computer
Finisar
Foxconn
IBM
JDS Uniphase
QLogic
Seagate
Sumitomo
Toshiba
Foreword

The development work on this specification was done by the SFF Committee, an industry group. The membership of the committee since its formation in August 1990 has included a mix of companies which are leaders across the industry.

When 2 1/2" diameter disk drives were introduced, there was no commonality on external dimensions e.g. physical size, mounting locations, connector type, connector location, between vendors.

The first use of these disk drives was in specific applications such as laptop portable computers and system integrators worked individually with vendors to develop the packaging. The result was wide diversity, and incompatibility.

The problems faced by integrators, device suppliers, and component suppliers led to the formation of the SFF Committee as an industry ad hoc group to address the marketing and engineering considerations of the emerging new technology.

During the development of the form factor definitions, other activities were suggested because participants in the SFF Committee faced more problems than the physical form factors of disk drives. In November 1992, the charter was expanded to address any issues of general interest and concern to the storage industry. The SFF Committee became a forum for resolving industry issues that are either not addressed by the standards process or need an immediate solution.

Those companies which have agreed to support a specification are identified in the first pages of each SFF Specification. Industry consensus is not an essential requirement to publish an SFF Specification because it is recognized that in an emerging product area, there is room for more than one approach. By making the documentation on competing proposals available, an integrator can examine the alternatives available and select the product that is felt to be most suitable.

SFF Committee meetings are held during T10 weeks (see www.t10.org), and Specific Subject Working Groups are held at the convenience of the participants. Material presented at SFF Committee meetings becomes public domain, and there are no restrictions on the open mailing of material presented at committee meetings.

Most of the specifications developed by the SFF Committee have either been incorporated into standards or adopted as standards by EIA (Electronic Industries Association), ANSI (American National Standards Institute) and IEC (International Electrotechnical Commission).

If you are interested in participating or wish to follow the activities of the SFF Committee, the signup for membership and/or documentation can be found at: www.sffcommittee.com/ie/join.html

The complete list of SFF Specifications which have been completed or are currently being worked on by the SFF Committee can be found at: ftp://ftp.seagate.com/sff/SFF-8000.TXT

If you wish to know more about the SFF Committee, the principles which guide the activities can be found at: ftp://ftp.seagate.com/sff/SFF-8032.TXT

Suggestions for improvement of this specification will be welcome. They should be sent to the SFF Committee, 14426 Black Walnut Ct, Saratoga, CA 95070.
TABLE OF CONTENTS

1. Scope 6
   1.1 Application Specific Criteria 6

2. References 6
   2.1 Industry Documents 6
   2.2 SFF Specifications 6
   2.3 Sources 6
   2.4 Conventions 6
   2.5 Definitions 7

3. General Description 7

4. Dimensional Requirements 8
   4.1 Receptacle Dimensions 8
   4.2 Receptacle Interface Dimensions 9
   4.3 Receptacle Footprint Dimensions 10
   4.4 Recommended Receptacle Pinout 11
   4.5 Plug Dimensions 12
   4.6 Recommended Plug Pinout 13
   4.7 Plug Shell Dimensions 14

FIGURES

Figure 3-1 Typical Application View 7
Figure 4-1 Receptacle dimensions (1 of 2) 8
Figure 4-2 Receptacle dimensions (2 of 2) 9
Figure 4-3 Receptacle Interface Dimensions 9
Figure 4-4 Receptacle Footprint Dimensions 10
Figure 4-5 Plug Dimensions 12
Figure 4-6 Plug Shell Dimensions 14

TABLES

Table 4-1 Recommended Receptacle Pinout 11
Table 4-2 Recommended Plug Pinout 13
Revision History:

Rev 0.5 – Updated Fig 4.1 to clarify the (2) 6.92 dimensions. Added Revision History page.
Multifunction 10 Gb/s 1x Shielded Connector (HSMIO)

1. Scope
This specification defines the terminology and mechanical requirements for a 5+4 and shielded cable plug and PCB mount receptacle connector system which is also designed to work with USB2.0 Micro B Plugs. Common use for this connector system would be anywhere a USB2.0 Micro B could be used. The mechanical dimensioning and signal assignments for the connector receptacle allows intermateability with the USB2.0 Micro B Plug.

1.1 Application Specific Criteria
This connector shall meet the USB3.0 electrical performance requirements as defined by the USB3.0 specification. The Receptacle will intermate with the USB2.0 Micro B Plug.

Both USB3.0 and USB PD define respective requirements for the transmission of multi-gigabit signals and power delivery. When this connector is used in either of these applications, its performance shall meet the requirements of the appropriate standard.

2. References

2.1 Industry Documents
The following interface standards are relevant to this SFF Specifications.

USB2.0
USB3.0
USB PD

2.2 SFF Specifications
There are several projects active within the SFF Committee. The complete list of specifications which have been completed or are still being worked on are listed in the specification at ftp://ftp.seagate.com/sff/SFF-8000.TXT

2.3 Sources
Those who join the SFF Committee as an Observer or Member receive electronic copies of the minutes and SFF specifications (http://www.sffcommittee.com/ie/join.html).

Copies of ANSI standards may be purchased from the InterNational Committee for Information Technology Standards (http://www.techstreet.com/incitsgate.tmpl).

2.4 Conventions
The dimensioning conventions are described in ANSI-Y14.5M, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters, which are the controlling dimensional units (if inches are supplied, they are for guidance only).

The ISO convention of numbering is used i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point. This is equivalent to the English/American convention of a comma and a period.
2.5 Definitions
For the purpose of SFF Specifications, the following definitions apply:

PD: Power Delivery

3. General Description
The Multifunction 10 Gb/s 1x Shielded Connector system offers USB3.0 signaling over an interface compatible with USB2.0 and is based on USB2.0 Micro B connector technology. This technology provides USB3.0 functionality over a widely adopted USB2.0 Micro B interface.

Figure 3-1 represents a typical receptacle configuration for this connector.
4. Dimensional Requirements
For dimensions not shown here, refer back to the USB2.0 specification.

4.1 Receptacle Dimensions.

FIGURE 4-1 RECEPTACLE DIMENSIONS (1 OF 2)
4.2 Receptacle Interface Dimensions
4.3 Receptacle Footprint Dimensions

FIGURE 4-4 RECEPTACLE FOOTPRINT DIMENSIONS
### 4.4 Recommended Receptacle Pinout

**TABLE 4-1 RECOMMENDED RECEPTACLE PINOUT**

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SIGNAL NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>StdA_SSTX+</td>
</tr>
<tr>
<td>8</td>
<td>StdA_SSTX_</td>
</tr>
<tr>
<td>7</td>
<td>StdA_SSRX+</td>
</tr>
<tr>
<td>6</td>
<td>StdA_SSRX_</td>
</tr>
<tr>
<td>5</td>
<td>GND-μUSB</td>
</tr>
<tr>
<td>4</td>
<td>ID</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
</tr>
<tr>
<td>1</td>
<td>VBUS</td>
</tr>
</tbody>
</table>
4.5 Plug Dimensions

FIGURE 4-5 PLUG DIMENSIONS
### 4.6 Recommended Plug Pinout

**TABLE 4-2 RECOMMENDED PLUG PINOUT**

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SIGNAL NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
</tr>
<tr>
<td>4</td>
<td>ID</td>
</tr>
<tr>
<td>5</td>
<td>GND- USB</td>
</tr>
<tr>
<td>6</td>
<td>StdA_SSRX-</td>
</tr>
<tr>
<td>7</td>
<td>StdA_SSRX+</td>
</tr>
<tr>
<td>8</td>
<td>StdA_SSTx-</td>
</tr>
<tr>
<td>9</td>
<td>StdA_SSTx+</td>
</tr>
<tr>
<td>10</td>
<td>CONTROL-1</td>
</tr>
<tr>
<td>11</td>
<td>CONTROL-2</td>
</tr>
<tr>
<td>12</td>
<td>CONTROL-3</td>
</tr>
<tr>
<td>13</td>
<td>CONTROL-4</td>
</tr>
</tbody>
</table>
4.7 Plug Shell Dimensions

FIGURE 4-6 PLUG SHELL DIMENSIONS